

CODE ON ENVIRONMENTAL SUSTAINABILITY MEASURES FOR EXISTING BUILDINGS

Edition 1.1

History of Amendments

S/N		cription of changes	Revision date		
1		.0 –first issue	1 st July 2013		
2		.1 –first revision	1 st July 2016		
	Building (Buildings	Building Control (Environmental Sustainability Measures for Existing Buildings) Regulations 2016 to extend Minimum Environmental Sustainability Standards to more medium-sized buildings.			
	"Scope" i	n Page 2 of the Code shall be replaced as :			
	The Code Building Buildings and Type				
	Type A (a) (b) (c) (d)	Data centres; Religious buildings; Residential buildings (other than serviced apartments); or Utility buildings;			
	Type B (e) (f) (g) (h) (i)	Industrial buildings; Railway premises; Port services and facilities; or Airport services and facilities. Any mixed-used developments which includes industrial buildings, railway premises, ports services and facilities or airport services and facilities."			

Contents

CODE ON ENVIRONMENTAL SUSTAINABILITY MEASURES FOR EXISTING BUILDINGS (EDITION 1.1)

Part 1	Introduction	1
Part 2	Scope	2
Part 3	Definitions	3
Part 4	Statutory Requirements	4
Part 5	Compliance Method	5
Part 6	Submission Procedures	24
Part 7	Scoring Methodology & Documentation	28

1 INTRODUCTION

In 2009, BCA rolled out its 2nd Green Building Masterplan, a roadmap that covers both new and existing buildings and sets out specific initiatives to achieve a truly sustainable built environment in Singapore. Under this Masterplan, the target set by the Inter-Ministerial Committee on Sustainable Development (IMCSD) is to green at least 80% of the buildings in Singapore by 2030 through the BCA Green Mark Certified rating. The current challenge is on greening the existing stock of buildings and legislation has been identified as one of the avenue to meet this target.

Since April 2008, BCA implemented the Building Control (Environmental Sustainability) Regulations which require new developments to meet a minimum environmental sustainability standard. However, this measure for new developments alone is not sufficient to greatly improve the sustainability of our built environment. Therefore, BCA has introduced some regulatory measures in Dec 2012 to require owners of existing buildings to improve the minimum environmental sustainability standards of existing buildings as and when the building owners install or replace their building cooling system. These buildings will need to meet the minimum Green Mark standards for existing buildings.

Besides meeting minimum standards, these buildings need to continue to operate at the optimum performance level, so that they will be able to reap the most benefits out of their retrofits. Thus, building owners are also required to conduct three-yearly audit on their building cooling systems in these buildings.

The intent of this Code for Environmental Sustainability Measures for Existing Buildings (referred to as "this Code") is to guide owners of existing buildings to improve the minimum sustainability standards of existing buildings and establish environmentally friendly practices in the operation and retrofitting of existing buildings.

This Code is not intended to abridge safety, health, environmental or related requirements contained in other applicable laws, codes or policies administered by relevant authorities. Where there is a conflict between a requirement of this Code and such other laws affecting the design and construction of the building, the laws shall take precedence.

If you need clarification on any aspect of this Code, please contact the Building and Construction Authority, Singapore (BCA).

The contents of this Code are protected by copyright and other forms of proprietary rights. All rights, title and interest in the contents are owned by, licensed to or controlled by BCA and shall not be reproduced, republished, uploaded, posted, transmitted or otherwise distributed in any way, without the prior written permission of BCA. Modification of any of the contents or use of the contents for any other purpose will be a violation of BCA's copyright and other intellectual property rights.

2 SCOPE

This Code sets out the minimum environmental sustainability measures for existing buildings and the administrative requirements in complying with the Building Control (Environmental Sustainability Measures for Existing Buildings) Regulations 2016. It includes the compliance method for determining the level of environmental sustainability of an existing building.

The Code shall be applicable to all prescribed buildings stated in the Building Control (Environmental Sustainability Measure for Existing Buildings) (Amended) Regulations 2016 except the following Type A and Type B Buildings:

Type A

- (j) Data centres;
- (k) Religious buildings;
- (I) Residential buildings (other than serviced apartments); or
- (m) Utility buildings;

Туре В

- (n) Industrial buildings;
- (o) Railway premises;
- (p) Port services and facilities; or
- (q) Airport services and facilities.
- (r) Any mixed-used developments which includes industrial buildings, railway premises, ports services and facilities or airport services and facilities.

For more details on the applicable building types, please refer to the "Building Control (Environmental Sustainability Measures for Existing Building) (Amendment) Regulations 2016".

The referenced codes, standards and other documents referred in this Code shall be considered part of the requirements of this Code to the extent as prescribed.

3 DEFINITIONS

For the purpose of this Code, the following definitions shall apply:

BC Act	The Building Control Act (Chapter 29)
BCA	The Building and Construction Authority
Chilled Water Plant	A building's centralised air conditioning system which makes use of chilled water as the medium for removing the heat from the buildings. This includes the chillers and its ancillary equipment, including pumps and cooling towers where applicable.
Gross Floor Area (GFA)	The "gross floor area" has the same meaning as "floor area" in the Planning (Development Charges) Rules (Cap.232, R 5)
Minimum Green Mark Score	The lowest Green Mark score that would meet the minimum environmental performance required for existing buildings.
Operational System Efficiency (OSE)	The measured system efficiency of the building's chilled water plant during its normal operating hours.
PE(Mech)	A person who is registered under the Professional Engineers Act (Cap. 253) in the mechanical engineering discipline and who has in force a practising certificate issued under that Act authorising him to engage in mechanical engineering.
Unitary Air Conditioning System	One or more factory-made assemblies that normally include an evaporator or cooling coil and a compressor combination. Units that perform a heating function area are also included.
Regulations	The Building Control (Environmental Sustainability Measures for Existing Building) (Amendment) Regulations 2016

In instances where terms are not expressly stated in this Code and are defined in other referenced documents, such terms shall have the meanings as determined in those documents.

4 STATUTORY REQUIREMENTS

4.1 Act and Regulations

The following Act and Regulations have relevance:

- a. the BC Act; and
- b. the Regulations.

4.2 Referenced Codes and Standards

The following codes and standards have relevance:

- a. Code on Envelope Thermal Performance for Buildings
- b. CP 24:1999 Code of Practice for Energy Efficiency Standard for Building Services and Equipment
- c. CP 13:1999 Code of Practice for Mechanical ventilation and Air-Conditioning in Buildings
- d. CP 38:1999 Code of Practice for Artificial Lighting in Buildings
- e. SS 531:Part 1: 2006 Code of Practice for Lighting of Work Places, Part 1 : Indoor
- f. SS 554:2009 Code of Practice for Indoor Air Quality for Air-conditioned Buildings
- g. NEA's Guidelines for Good Indoor Air Quality in Office Premises
- h. ASHRAE Guideline 22 Instrumentation for Monitoring Central Chilled water Plant Efficiency by American Society of Heating, Refrigerating and Air-Conditioning Engineer (ASHRAE)
- i. AHRI Standard 550/590 Performance Rating of Water Chilling and Heat Pump Water–Heating Packages Using the Vapour Compression Cycle by Air-Conditioning, Heating and Refrigeration Institute(AHRI)
- j. Singapore Standard 591 Code of Practice for long term measurement of central chilled water system energy efficiency

4.3 Responsibility

To comply with the minimum environmental sustainability measures stipulated in the Regulations, the building shall achieve a minimum Green Mark score of 50 points and meet the pre-requisite requirements. Before commencement of the replacement or retrofitting works, the building owner shall appoint a PE(Mech) to assess the design of the retrofitting works, prepare the Green Mark design score; provide the documentation of the design score that meets the minimum environmental sustainability standard and such other documents required in the Regulations.

The building owner shall then submit the design score, declaration by PE(Mech) and supporting documents to BCA for approval before the commencement of the retrofitting works. He must also commence and complete the installation/replacement works not later than the period prescribed in the Regulations.

Upon completion of the installation or replacement works, the PE(Mech) shall assess and prepare the as-built Green Mark score that meets the minimum environmental sustainability standard, and provide to the building owner the documentation of the asbuilt score, completion certificate and such other documents required in the Regulations.

The building owner shall submit the as-built score, declaration by PE(Mech) and supporting documents to BCA for approval not later than the period prescribed in the Regulations.

4.4 Minimum Environmental Sustainability Measures

4.4.1 The minimum Green Mark score for the retrofitting works in the existing buildings is 50 points. Buildings which are required to meet this minimum standard are to score at least 30 points in the energy efficiency section and at least a total of 20 points in the other green requirements and all the pre-requisite requirements stipulated in Code.

5 COMPLIANCE METHOD

5.1 Environmental Sustainability Standard

- **5.1.1** The environmental sustainability standard of an existing building shall be determined by the level of environmental performance and the numerical scores (i.e. Green Mark points) achieved in accordance with the degree of compliance with the applicable criteria using the scoring methodology as specified in this Code. The framework and point allocations for the assessment criteria are as illustrated in Table 5.1.1 and 5.1.2.
- **5.1.2** The criteria consist of five (5) environmental impact categories namely:
 - (a) <u>Part 1 Energy Efficiency</u>: This category focuses on greater use of energy efficient building system including air-conditioning, ventilation, lightings, lifts and escalators; and also monitoring of these systems. It also looks at applications of renewable energy and energy efficient features.
 - (b) <u>Part 2 Water Efficiency</u>: This category focuses on the use of water efficient fittings and adoption of water efficient features, which can help to reduce the use of water for building operations.
 - (c) <u>Part 3 Sustainable Operation & Management</u>: This category focuses on the building management operation and maintenance, the use of sustainable and environmental-friendly products, provision of waste management and greater use of greenery.
 - (d) <u>Part 4 Indoor Environmental Quality</u>. This category focuses on promoting a healthy indoor environment which includes air quality, thermal comfort, minimizing indoor air pollutants, acceptable internal noise level and encourage good lighting quality.
 - (e) <u>Part 5 Other Green Features</u>: This category focuses on the adoption of green practices and new technologies that are innovative and have potential environmental benefits.

 Table 5.1.1 : Framework and Point Allocation for BCA Green Mark for Existing Non-Residential Buildings Criteria (Version 3.0)

	CATEGORY	POINT ALLOCATION
(I) ENE		
σ	Part 1 – Energy Efficiency	
Minimum 30 points to be scored	ENRB 1-1 Thermal Performance of Building Envelope	5
SO SO	ENRB 1-2 Air Conditioning System	} 32
be	ENRB 1-3 Natural Ventilation / Mechanical Ventilation	J
s to	ENRB 1-4 Artificial Lighting	13
oint	ENRB 1-5 Ventilation in Carparks	4
bd (ENRB 1-6 Ventilation in Common Areas	5
30	ENRB 1-7 Lifts and Escalators	2
unc	ENRB 1-8 Energy Efficient Practices & Features	12
nin	ENRB 1-9 Energy Policy & Management	1
ž	ENRB 1-10 Renewable Energy	15
	Category Score for Part 1 – Energy Efficiency	89
(II) OTH		
	Part 2 - Water Efficiency	
	ENRB 2-1 Water Monitoring	4
	ENRB 2-2 Water Efficient Fittings	12
	ENRB 2-3 Alternative Water Sources	3
	ENRB 2-4 Water Efficiency Improvement Plans	1
	ENRB 2-5 Irrigation System and Landscaping	2
	ENRB 2-6 Cooling Towers	2
	Category Score for Part 2 – Water Efficiency	24
	Part 3 - Sustainable Operation & Management	Г — -
	ENRB 3-1 Building Operation & Maintenance	4
eq	ENRB 3-2 Post Occupancy Evaluation	3
cor	ENRB 3-3 Waste Management	7
Ф N	ENRB 3-4 Sustainable Products	8
а 0	ENRB 3-5 Greenery	10
its t	ENRB 3-6 Environmental Protection	3
points to be scored	ENRB 3-7 Green Transport	4
	Category Score for Part 3 – Sustainable Operation and Management	39
Minimum 20	Part 4 - Indoor Environmental Quality	
Ĩ.	ENRB 4-1 Indoor Air Quality Performance	8
Mir	ENRB 4-2 Indoor Air Pollutants	2
	ENRB 4-3 Lighting Quality	5
	ENRB 4-4 Thermal Comfort	2
	ENRB 4-5 Internal Noise Level	1
	Category Score for Part 4 – Indoor environment Quality	18
	Part 5 – Other Green Features	
	ENRB 5-1 Green Features & Innovations	10
	Category Score for Part 5 – Other Green Features	10
	Category Score for Other Green Requirements	91
	Total Green Mark Score	180

- **5.1.3** <u>Energy Efficiency</u> consists of Part 1- Energy Efficiency where points are allocated for the various energy efficient systems, practices and features used. A minimum of 30 points must be obtained from this group to meet the minimum environmental sustainability standard.
- **5.1.4** <u>Other Green Requirements</u> consist of Part 2 Water Efficiency, Part 3 Sustainable Operation & Management, Part 4 Indoor Environmental Quality and Part 5 Other Green Features. Points are allocated for the water efficient features, use of environmental friendly practices, waste management and innovative green features used. A minimum of 20 points must be obtained from this group to comply with the minimum environmental sustainability standard.
- **5.1.5** The Green Mark score of the building design is the total of all the numerical scores (i.e. Green Mark points) assigned based on the degree of compliance with the applicable criteria listed in Table 4.1.2 and the scoring methodology stated herein.
- **5.1.6** Part 1 Energy Efficiency applies to both air-conditioned and non air-conditioned spaces. Where there is a combination of air-conditioned and non air-conditioned spaces, the points allocated are to be pro-rated in accordance with the respective floor areas. For simplicity, points applicable to air-conditioned areas are accounted only if the aggregate air-conditioned areas exceed 500 m². Similarly, points applicable to non air-conditioned areas are accounted only if the aggregate areas are more than 10% of the total floor areas excluding carparks and common areas.
- **5.1.7** In addition to the minimum 30 points to be attained from Part 1: Energy Efficiency, there are other pre-requisite requirements that are to be complied with, as outlined in the following:
 - (a) Minimum system efficiency of air-conditioning system
 - (i) For Buildings using Water Cooled Chilled-Water Plant:

Building Cooling Load	< 500 RT	≥ 500 RT	
Minimum System Efficiency of Water-Cooled Chilled Water Plant	0.85 kW/RT	0.75 kW/RT	

(ii) For Buildings using Air Cooled Chilled-Water Plant or Unitary Air-Conditioners:

Building Cooling Load	< 500 RT	≥ 500 RT
Minimum System Efficiency of Air Cooled Chilled Water Plant or Unitary Air-Conditioners	1.1 kW/RT	1.0 kW/RT

- (b) Permanent measuring instruments for monitoring water cooled chilled-water and air-cooled chilled-water system operating system efficiency (OSE) shall be provided in accordance with the requirements stipulated in this Code.
- (c) Heat Balance test for water-cooled chilled-water system shall be performed for verification of the accuracy of the measuring instruments.

(d) To conduct three yearly Indoor Air Quality audit that complies with NEA's Guidelines for Good Indoor Air Quality in Office Premises or SS 554:2009 Code of Practise for Indoor Air Quality for Air-conditioned Buildings.

Table 5.1.2 : Existing Non-Residential Building Criteria

Energy Related Requirements

Part 1 - Energy Efficience		Green Mark Points		
ENRB 1-1 Thermal Perfo Envelope	ormance of Bu			
Enhance the overall the envelope to minimize heat		0.5 points for every reduction of 1 W/m2 in ETTV from the baseline of 50 W/m ²		
cooling load requirement.	-	Point scored = 0.5 x (50 – ETTV)		
		(Up to 5 points)		
ENRB 1-2 Air-Condition Applicable to Air-conditioned Bu conditioned areas > 500m ²)		(a) Water-Cooled Chilled-Water Plant		
Encourage the use of be	tter efficiency	air-conditioned	Building cooling load ≥ 500RT	
equipment to minimize (System efficiency in kW/t	the energy ton)		14 points for achieving plant efficiency of 0.75 kW/ton	
 (a) Water-Cooled Chilled-Water Plant: a) Water-Cooled Chiller b) Chilled water pump c) Condenser water pump d) Cooling tower 			0.35 point for every percentage improvement in the chiller plant efficiency better than 0.75 kW/ton	
			Point scored = 0.35 x (% improvement)	
Baseline	< 500 RT	ooling Load ≥500 RT	Building cooling load < 500RT	
<u>Pre-requisite Requirements</u> Minimum system efficiency of central chilled-water plant	0.85 kW/RT	0.75 kW/RT	14 points for achieving plant efficiency of 0.85 kW/ton	
<u>Pre-requisite Requirements</u> <u>for GLS Goldplus projects</u> Minimum system efficiency of central chilled-water plant	0.75 kW/RT	0.68 kW/RT	0.3 point for every percentage improvement in the chiller plant efficiency better than 0.85 kW/ton	
			Point scored = 0.3 x (% improvement)	
Pre-requisite Requirements for GLS Platinum projects			(Up to 20 points)	
Minimum system efficiency of central chilled-water plant	0.7 kW/RT	0.65 kW/RT	OR	
			(b) Air-Cooled Chilled-Water Plant/Unitary Air Conditioners	
			Building cooling load ≥ 500RT	
			14 points for achieving plant efficiency of 1.0 kW/ton	
OR (b) Air Cooled Chilled-Water Plant / Unitary Air-			0.25 point for every percentage improvement in the chiller plant efficiency better than 1.0 kW/ton	
Conditioners: Air cooled Chilled-Water F Air-Cooled Chiller Chilled Water Pur			Point scored = 0.25 x (% improvement)	

- Unitary Air-Conditioners: Variable Refrigerant Flow (VRF) System Water-Cooled Package Unit Single-Spilt Unit Multi-Spilt Unit

	;у	Green Mark Points		
Baseline	Building C < 500 RT	ooling Load ≥500 RT	Building cooling load < 500RT	
<u>Pre-requisite Requirements</u> Minimum system efficiency of air cooled chilled water plant or unitary conditioners	1.1 kW/RT	1.0 kW/RT	14 points for achieving plant efficiency of 1.1 kW/ton	
lote: Where there is a combinat nitary air-conditioned system, t	he computation for	0.2 point for every percentage improvement the chiller plant efficiency better than 1.1 kW/ton		
will only be based on the air-conditioning system with a larger aggregate capacity.			Point scored = 0.2 x (% improvement) (Up to 20 points)	
 c) Air Distribution system Air Handling Units Fan Coil Units (F0) 	s (AHUs)		 (c) Air Distribution System 0.15 point for every percentage improvement in the air distribution system efficiency over the baseline 	
Baseline – Fan power limitat Allowable nameplate mo		ioning system	Point scored = 0.15 x (% improvement)	
Constant volume	Variable vo	lume	(Up to 8 points)	
0.47 W/CMH Note: For buildings using distric compute the plant efficiency un obtained will be pro-rated ba- fficiency under Part 1-2(c)	der Part 1-2 (a)	there is no need to and (b). The points		
 d) Prerequisite requirem measuring instrument cooled chilled-water water plant efficiency. shall have the capabilit 	ts for monito plant and air- The installed ty to calculate a	oring of water- -cooled chilled- instrumentation	1 point	
 efficiency (i.e. kW/RT) in accordance with A 550/590. The follo installation are also red Location and installat to meet the manufact Data acquisition sy resolution of 16 bit. 	SHRAE Guide wing instrun quired to be co tion of the mea turer's recomn	e 22 and AHRI nentation and omplied with: asuring devices nendation.		
 in accordance with A 550/590. The follo installation are also red Location and installa to meet the manufact Data acquisition sy resolution of 16 bit. All data logging with sampling time interval 	SHRAE Guide wing instrun quired to be co tion of the mea turer's recomm stem to hav capability to tr al.	e 22 and AHRI nentation and omplied with: asuring devices nendation. ve a minimum end at 1 minute		
 in accordance with A 550/590. The follo installation are also red Location and installation are also red Location and installation are also red Data acquisition sy resolution of 16 bit. All data logging with sampling time interval Dedicated digital pow for the following grouchilled water pump(signed and cooling tower(s). 	SHRAE Guide wing instrum quired to be co tion of the me- turer's recomme vstem to hav capability to tr al. wer meters sh ups of equipme s), condenser	e 22 and AHRI nentation and omplied with: asuring devices nendation. ve a minimum end at 1 minute nall be provided nents: chiller(s), water pump(s)		
 in accordance with A 550/590. The follo installation are also red Location and installat to meet the manufact Data acquisition sy resolution of 16 bit. All data logging with sampling time intervation. Dedicated digital pow for the following group chilled water pump(stand cooling tower(s)). Flow meters to be point to the point of the point	SHRAE Guide wing instrum quired to be co tion of the mea- turer's recommendation vstem to hav capability to tr al. wer meters sh ups of equipmes), condenser provided for ch p and shall be pe or equivaler	e 22 and AHRI nentation and omplied with: asuring devices nendation. ve a minimum end at 1 minute nall be provided nents: chiller(s), water pump(s) nilled-water and e of ultrasonic / nt.		
 in accordance with A 550/590. The follo installation are also red Location and installat to meet the manufact Data acquisition sy resolution of 16 bit. All data logging with sampling time interval Dedicated digital pow for the following gro chilled water pump(s and cooling tower(s). Flow meters to be p condenser water loo full bore magnetic typ Temperature sensors water and condenser end-to-end measu exceeding ± 0.05 °C 	SHRAE Guide wing instrum quired to be co- tion of the me- turer's recommendation vstem to have capability to trail. wer meters shous of equipment shous of equipment provided for che p and shall be pe or equivaler s are to be pro- trail water loop and urement un sover entire meters and sources	e 22 and AHRI nentation and omplied with: asuring devices nendation. ve a minimum end at 1 minute nall be provided nents: chiller(s), water pump(s) nilled-water and e of ultrasonic / nt. vided for chilled nd shall have an icertainty not neasurement or		
 in accordance with A 550/590. The follo installation are also red Location and installat to meet the manufact Data acquisition sy resolution of 16 bit. All data logging with sampling time interval Dedicated digital pow for the following grouchilled water pump(s and cooling tower(s). Flow meters to be p condenser water loo full bore magnetic typ Temperature sensors water and condenser end-to-end measure 	SHRAE Guide wing instrum quired to be co- tion of the me- turer's recomm /stem to hav capability to tr al. wer meters sh ups of equipm s), condenser provided for ch p and shall be be or equivaler s are to be pro water loop an urement un cover entire m thermo-wells s sures that the fluid flow. Pro erature measu	e 22 and AHRI nentation and omplied with: asuring devices nendation. //e a minimum end at 1 minute nend at 1 minute nents: chiller(s), water pump(s) nilled-water and e of ultrasonic / nt. vided for chilled neasurement or shall be installed sensors can be visions shall be rement location		

Part 1 - Energy Efficiency	Green Mark Points
(e) <i>Prerequisite requirements</i> : Verification of central water cooled chilled-water plant instrumentation: Heat Balance – substantiating test for water cooled chilled-water plant to be computed in accordance with AHRI 550/590. The operating system efficiency and heat balance to be submitted to BCA upon commissioning.	1 point
(f) Provision of variable speed controls for chiller plant equipment such as chilled-water pumps and cooling tower fans to ensure better part-load plant efficiency.	1 point
(g) Sensors or similar automatic control devices are used to regulate outdoor air flow rate to maintain the concentration of carbon dioxide.	1 point
Carbon dioxide acceptable range ≤ 700 ppm above outdoor	
 ENRB 1-3 Natural Ventilation / Mechanical Ventilation Applicable to Non Air-Conditioned Building Areas (with an aggregate non air-conditioned areas > 10% of total floor area excluding carparks and common areas) (a) <u>Natural Ventilation</u> (only applicable to occupied areas, excluding circulation, plant rooms and transit areas) Encourage building that facilitates good natural ventilation. Proper design of building layout that utilises prevailing wind conditions to achieve adequate cross ventilation. 	20 based points will be awarded for use of natural ventilation 1.6 points for every 10% of NV areas with window openings facing north and south directions and cross ventilation
 (b) <u>Mechanical Ventilation</u> Encourage energy efficient mechanical ventilation system as the preferred ventilation mode to air- conditioning in buildings. Baseline: Fan power limitation I mechanical ventilation systems: <u>Allowable nameplate motor power</u> <u>Constant volume</u> <u>Variable volume</u> <u>0.47 W/CMH</u> <u>0.74 W/CMH</u> Note : Where there is a combination of naturally ventilated and mechanical ventilated spaces, the points scored will only be based on the predominant ventilation modes of normally occupied spaces. 	(Up to 32 points) 0.6 point for every subsequent 1% improvement from the baseline (Up to 32 points)
ENRB 1-4 Artificial Lighting Encourage the use of energy efficient lighting to minimize energy consumption from lighting usage while maintaining proper lighting level. Please refer to the Annex 1 for the baselines of lighting power budget	0.3 point for every percentage improvement in lighting power budget Point scored = 0.3 x (% improvement) (Up to 13 points) Excluding tenant lighting provision – Up to 5 points)

Part 1 - Energy Efficiency	Green Mark Points		
 Part 1 - Energy Efficiency ENRB 1-5 Ventilation in Carparks Encourage the use of energy efficient design and control of ventilation systems in carparks. (a) Carparks designed with natural ventilation. (b) CO sensors are used to regulate the demand for mechanical ventilation (MV) Note: Where there is a combination of different ventilation mode adopted for carpark design, the points obtained will be prorated accordingly. 	Naturally ventilated carparks – 4 points Points scored based on the mode of mechanical ventilation provided Fume extract – 2.5 points MV with or without supply – 2 points (Up to 4 points)		
ENRB 1-6 Ventilation in Common Areas Encourage the use of energy efficient of ventilation systems in the following common areas: (a) Toilets (b) Staircases (c) Corridors (d) Lift lobbies (e) Atrium	Extent of Coverage: At least 90% of each applicable area Point scored based on the mode of ventilation provided in the applicable areas Natural ventilation – 1.5 points for each area Mechanical ventilation – 0.5 point for each area (Up to 5 points)		
 ENRB 1-7 Lifts and Escalators Encourage the use of energy efficient lifts and escalators. Lifts and/or escalators with AC variable voltage and variable frequency (VVVF) motor drive and sleep mode features. 	Extent of Coverage: All lifts and escalators Lifts – 1 point Escalators- 1 point		
 ENRB 1-8 Energy Efficient Practices & Features Encourage the use of energy efficient practices and features which are innovative and/or have positive environmental impact. (a) Computation of the energy consumption in the form of energy efficiency index (EEI) (b) Use of energy efficient products that are certified by approved local certification body (c) Use of energy efficient features Example: Re-generative lift Heat recovery system Motion sensors Sun pipes Light shelves Photocell sensors to maximize the use of daylight Heat pumps, etc. 	1 point 0.5 point for each equipment type (Up to 2 points) 2 points for every 1% energy saving over the total building energy consumption (Up to 9 points)		

Part 1 - Energy Efficiency	G	reen Mark Poir	nts
ENRB 1-9 Energy Policy and Management			
 (a) Energy policy, energy targets and regular review with top management's commitment as part of an environmental strategy 	0.5 point		
(b) To show intent, measures and implementation strategies of energy efficiency improvement plans to achieve energy target set over the next three years. Committed energy savings accrued from proposed measures should be quantified.	0.5 point		
ENRB 1-10 Renewable Energy Encourage the application of renewable energy sources in buildings.	efficiency inde	based on the ex ex (EEI) and % by renewable en	replacement of
	Energy	(based on total elec	ement of electricity ctricity consumption) energy source
	Efficiency Index (EEI)	Include tenant's usage	Exclude tenant's usage
	≥ 50 kWh/m²/yr	5 points	3 points
	< 50 kWh/m²/yr	3 points	1.5 points
		(Up to 15 points	S)
PART 1 – ENERGY EFFICIENCY CATEGORY SCORE:	(Part 1-2) X <u>4</u>	<u>vir-conditioned Build</u> Total Floor Area	ling Floor Area
	(Part 1-3) X <u>Non Air-Conditioned Building Floor Area</u> Total Floor Area		
	+ (Part 1-1, Part 1-4 to Part 1-10)		
	Where Part 1-2 = Total Green Mark Points obtained under Part 1-2		
	Part 1-3 = Total Green Mark Points obtained under Part 1-3		
	Part 1-1, Part 1-4 to Part 1-10 = Total Green Mark Points obtained under Part 1-1, Part 1-4 to Part 1-10		

Part 2 - Water Efficiency	Green Mark Points		
ENRB 2-1 Water Monitoring			
Provide private-metering and leak detection system for better control and monitoring.			
(a) To monitor the water consumption on monthly basis		1 point	
 (b) Provision of private-meters for major water uses (e.g. cooling tower, water features, irrigation, swimming pools, tenants' usage) 		1 point	
(c) Provision of automated / smart metering for monitoring and leak detection.		2 point	
ENRB 2-2 Water Efficient Fittings Encourage the use of water efficient fittings under Water Efficiency Labelling Scheme (WELS) or adopt	Efficiency Lab	ed on Water beling Scheme ELS)	Points scored based on the number and water efficiency rating of
equivalent water efficient flow-rate/flush volumes for water fittings:-	Very Good	Excellent	the fitting type used
Basin taps and mixersShowers	Weig	htage	(up to 12 points)
 Sink/Bib taps and mixers Urinals and Urinal Flush Valves 	9	12	
 Dual-Flush Low Capacity Flushing Cisterns Or 			
To have PUB Water-Efficient Building Certificate.	9 points		
ENRB 2-3 Alternative Water Sources	Points awarded based on % reduction in total potable water usage of the applicable uses		
Use of suitable systems that utilize alternative water sources for non-potable uses : irrigation, washing, water features, toilet flushing, etc (excluding cooling tower make up water) to reduce use of potable water. Alternative sources can include rainwater, greywater (for toilet flushing only), NEWater, AHU condensate and recycled water from approved sources.	> 50 % - 3 points \geq 10 % to 50 % - 2 points < 10 % - 1 point (Up to 3 points)		
ENRB 2-4 Water Efficiency Improvement Plans			
Targets to improve building water performance against own building water performance baseline should be set. To show intent, measures and implementation strategies of water efficiency improvement plans over the next three years. Committed water savings accrued from proposed measures should be quantified. (PUB water efficiency management plan is acceptable as evidence)		1 point	

Part 2 - Water Efficiency	Green Mark Points
ENRB 2-5 Irrigation System and Landscaping	
 (a) Use of automatic water efficient irrigation system with rain sensor, soil moisture sensor or equivalent control system. 	Extent of Coverage: At least 50% of the landscape areas are served by the system 1 point
(b) Use of drought tolerant plants that require minimal irrigation.	Extent of Coverage: At least 50% of the landscape areas 1 point
ENRB 2-6 Cooling Towers	
Reduce potable water use for cooling purpose.	
 (a) Use of cooling tower water treatment system which can achieve 7 or better cycles of concentration at acceptable water quality. 	1 point
(b) Use of NEWater or on-site recycled water from approved sources.	1 point
PART 2 – WATER EFFICIENCY	Sum of Green Mark Points obtained from
CATEGORY SCORE :	ENRB 2-1 to 2-6

Par	t 3 - Sustainable Operation & Management	Green Mark Points
EN	RB 3-1 Building Operation & Maintenance	
(a)	The environmental policy that reflects the sustainability goals set.	1 point
(b)	A green guide for the occupants or visitors should be disseminated through various channels. Best practices to reduce energy use, water use and maintain a good indoor environment should be documented in this green guide. To demonstrate evidences of occupant involvement in environmental sustainability.	1 point
(c)	In-house building management team comprises one Certified Green Mark Facilities Manager (GMFM), Singapore Certified Energy Manager (SCEM) / Green Mark Professional (GMP).	0.5 point for certified GMFM 1 point for certified SCEM / GMP (Up to 1 point)
(d)	The environmental management system of the building is ISO14000 or ISO 50001 certified.	1 point
EN	RB 3-2 Post Occupancy Evaluation	
(a)	Conduct post occupancy survey for occupant's satisfaction on energy and environmental performance.	2 points
	Required number of people surveyed shall be:	
	- 10% of total occupancy and up to 100 maximum.	
	- minimum 5 people shall be surveyed if total occupancy is less than 50.	
(b)	List of corrective actions taken following the post occupancy evaluation, if any.	1 point
EN	RB 3-3 Waste Management	
a)	Provision of facilities or recycling bins for collection and storage of different recyclable waste such as paper, glass, plastic, food waste, etc.	2 points
b)	Promote and encourage waste minimization and recycling among occupants, tenants and visitors through various avenues.	2 points
c)	Provide the proper storage area for the recyclable waste.	1 point
d)	To quantify and monitor the recycling programme for continuous improvement.	2 points

Part 3 - Sustainable Operation & Management		Gı	een Mark	Points
ENRB 3-4 Sustainable Products Promote use of environmentally friendly products that are certified by approved local certification body.	extent of	of enviro	ed on the nmental products	Points scored based on the weightage and the extent of coverage & impact
	Good	Very Good	Excellent	1 point for high impact item 0.5 point for low
	1	1.5	2	impact item (Up to 8 points)
ENRB 3-5 Greenery			I	
Encourage greater use of greenery to reduce heat island effect.				
 (a) Greenery Provision (GnP) is calculated by considering the 3D volume covered by plants using the following Green Area Index (GAI) : 	G	nP = 1.0		 2 points 3.5 points 5 points
Grass GAI = 1 ; Shrubs GAI = 3; Palms Trees GAI = 4; Trees GAI = 6			(Up to	5 points)
(b) Use of compost recycled from horticulture waste.			1 poir	nt
(c) Provision of roof top greenery	≥ 20%	& 50% c	eenery are of useable ble roof are	roof areas - 1 point
(d) Provision of Vertical Greenery	-	2 and <5	eenery are 0m2	eas - 1 point - 2 points
ENRB 3-6 Environmental Protection				
(a) Green procurement policy – Adoption of sustainable and environmental-friendly procurement and purchasing policy in the operation and maintenance of the building.			1 poir	nt
(b) Reduce the potential damage to the ozone layer and the increase in global warming through the release of ozone depleting substances and greenhouse gases.				
• Refrigerants with ozone depletion potential (ODP) of zero or with global warming potential (GWP) of less than 100.			1 poir	nt
 Use of refrigerant leak detection system at critical areas of plant rooms containing chillers and other equipments with refrigerants. 			1 poir	nt

Par	t 3 - Sustainable Operation & Management	Green Mark Points
EN	RB 3-7 Green Transport	
poll	mote the use of public transport or bicycles to reduce ution from individual car use with the following vision:	
(a)	Good access to nearest MRT/LRT or bus stops.	1 point
(b)	Provision of covered walkway to facilitate connectivity and the use of public transport	1 point
(c)	Provision of priority parking lots for hybrid/electric vehicle within the development	1 point
(d)	Provision of sheltered bicycle parking lots with adequate shower and changing facilities.	Extent of Coverage : Minimum 10 number of bicycle parking lots, cap at 30 where applicable
		Points scored based on the number of bicycle parking lots provided (with adequate shower and changing facilities)
		1 point if the number provided ≥ 1% x GFA/10
		0.5 point if the number provided ≥ 0.5% x GFA/10
	PART 3 – SUSTAINABLE OPERATION AND MANAGEMENT	Sum of Green Mark Points obtained from ENRB 3-1 to 3-7
	CATEGORY SCORE :	

Par	t 4 – Indoor Environmental Quality	Green Mark Points
EN	RB 4-1 Indoor Air Quality Performance	
To (a)	promote a healthy indoor environment. <i>Prerequisite Requirements:</i> To conduct full IAQ audit once in three years that complies with NEA's Guidelines for Good Indoor Air Quality in Office Premises or SS554:2009 Code of Practice for `Indoor air quality for air-conditioned buildings' by an accredited laboratory under the Singapore Accreditation Council.	4 points
(b)	Implement effective IAQ management plan to ensure building ventilation systems are frequently maintained to ensure or clean delivery of air.	1 point
(c)	Use of high efficiency air filter (at least MERV 13) in AHU to reduce indoor contaminants and provide good protection for cooling coil and reducing frequency or eliminating duct cleaning	1 point
(d)	Room temperature display (at least 1 unit per floor)	1 point
(e)	Additional carbon dioxide sensor display (at least 1 unit per floor)	1 point
EN	RB 4-2 Indoor Air Pollutants	
	imise airborne contaminants, mainly from inside rces to promote a healthy indoor environment.	1 point
(a)	Use of low volatile organic compounds (VOC) paints certified by an approved local certification body.	
(b)	Use of environmental friendly adhesives certified by an approved local certification body.	1 point
EN	RB 4-3 Lighting Quality	
	encourage good workplace lighting quality to mote productivity and occupant comfort	
(a)	Lighting level to comply with SS531:Part 1:2006 or CP38:1999 for various uses.	1 point
(b)	Controllability of lighting system	At least 90% of occupants are able to adjust lighting to suit their task needs and preference
		Controlled by light switches - 1 point Controlled by task lights - 2 points
		(Up to 2 points)

Part 4 – Indoor Environmental Quality	Green Mark Points
(c) High frequency ballast	All applicable areas in the entire building that are served by fluorescent lightings
	20% to < 40%
	(Up to 2 points)
ENRB 4-4 Thermal Comfort	
(a) Ensure the consistent indoor conditions for thermal comfort:	1 point
Indoor dry-bulb temperature within 22.5 °C to 25.5 °C and relative humidity <70%	
(b) Controllability of temperature	1 point
ENRB 4-5 Internal Noise Level	
Ensure internal noise level are maintained at an appropriate levels and to comply with CP13:1999 or SS553:2009	1 point
PART 4 – INDOOR ENVIRONMENTAL QUALITY CATEGORY SCORE :	Sum of Green Mark Points obtained from ENRB 4-1 to 4-5

Part 5 – Other Green Features	Green Mark Points
ENRB 5-1 Green Features and Innovations	
To encourage the use of other green features which are innovative and/or have positive environmental impact.	
Examples :Tenants with Green Mark for Office Interior or	
 Frenants with Green Mark for Onice Intende of Restaurant Green Lease Ultraviolet light-C band (UV) emitters in air handling units (AHUs) to improve indoor air quality Provision of carpark guidance system Use of self cleaning façade system Use of grey water recycling system Titanium Dioxide coating to remove odour in toilets Use of pneumatic waste collection system Use of double refuse chutes for separating recyclable from non-recyclable wastes Stormwater management 	2 points for high impact item 1 point for medium impact item 0.5 point for low impact item (Up to 10 Points)
PART 5 – OTHER GREEN FEATURES CATEGORY SCORE :	Sum of Green Mark Points obtained from ENRB 5-1
Green Mark Score (Existing Non-Residential)	
(Part 3 – Sus (Part 4 – Ind	Iter Efficiency) + stainable Operation and Management) + oor Environmental Quality) + her Green Features)]

Annex 1: Maximum lighting power budget (including ballast loss)

Type of usage	Maximum lighting power budget (W/m2)
Offices	15
Classrooms	15
Hotel guest room	15
Lecture theatres	15
Auditoriums / Concert halls	10
Shops / Supermarkets / Departmental stores (including general, accent & display lighting)	25
Restaurants	15
Lobbies / Atriums / Concourse	10
Stairs	10
Corridors	10
Car parks	5
Electronic manufacturing and fine detail / Assembly industries	20
Medium and heavy industries	15
Warehouses / Storage areas	10

6 SUBMISSION PROCEDURES

6.1 General

Under the Regulations, buildings which are required to comply with the minimum environmental sustainability measures, shall achieve minimum Green Mark score of 50 points and meet the pre-requisite requirements as specified in this Code. The Green Mark score must be submitted by the PE(Mech) at the following stages:-

- (a) before the commencement of the retrofitting works; and
- (b) after the completion and commissioning of the retrofitting works.

6.2 Submission before commencement of retrofitting works

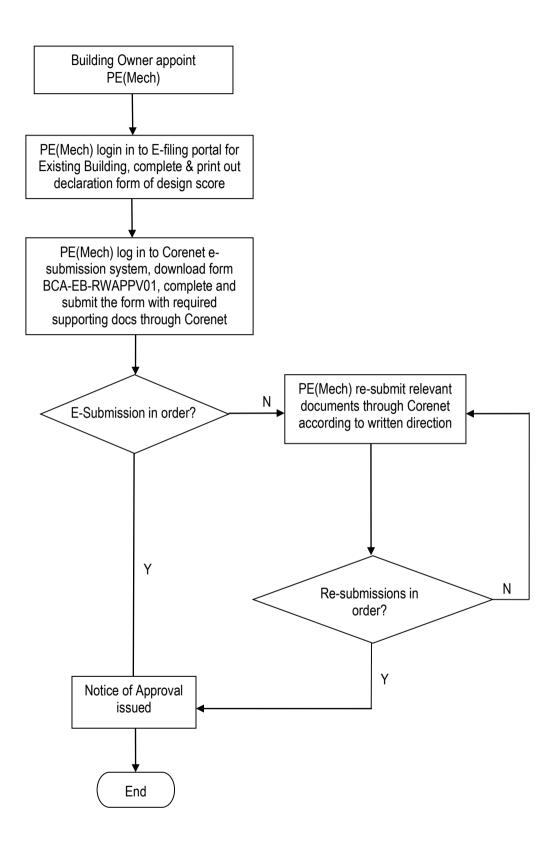
Before the commencement of the retrofitting works, the building owner shall appoint a PE(Mech) to assess and prepare the design Green Mark score for the building. The PE(Mech) shall encrypt and submit electronically the following forms / documents to BCA via CORENET e-submission system:-

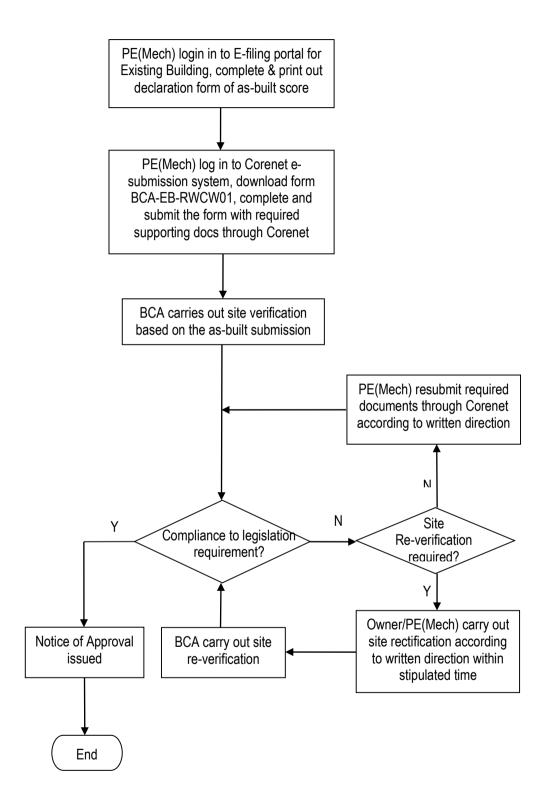
- (a) Form BCA-EB-NAPPPE01 "Notification of Appointment / Authorization of Mechanical Engineer;
- (b) Form BCA-EB-RWAPPV01 "Application for Approval of Retrofitting Plans Environmental Sustainability Measures for Existing Buildings";
- (c) Green Mark design score and declaration form by PE(Mech); and
- (d) Supporting documents listed in Form BCA-EB-RWAPPV01:
 - Audit report on current air-conditioning system before retrofitting works
 - Cooling load calculations (if there is a change in cooling load or unitary airconditioning systems installed)
 - Design schematic drawing of proposed air-conditioning system (water-side)
 - Chiller plant room layout drawing including position of M&V instruments using symbol and color scheme
 - Chiller part-load performance data sheet from equipment supplier
 - Chilled water pump selection data sheet and pump curves showing design flow
 and head, pump hydraulic efficiency, motor absorbed power and efficiency
 - Condenser water pump selection data sheet and pump curves showing design flow and head, pump hydraulic efficiency, motor absorbed power and efficiency
 - Cooling tower selection data sheet and location plans
 - Project schedule for retrofitting works is attached
 - Worksheet for chiller plant efficiency computation

BCA will issue Notice of Approval if the submissions are in order.

6.3 Submission after completion of the retrofitting works

Upon completion of the retrofitted works and system commissioning, the PE(Mech) shall assess and prepare the As-built Green Mark score, encrypt and submit electronically the following forms / documents to BCA via CORENET e-submission system:-


- (a) Form BCA-EB-NAPPPE01 "Notification of Appointment / Authorization of Mechanical Engineer;
- (b) Form BCA-EB-RWCW01 "Application for Approval of Completion of Retrofitting Works & Operating System Efficiency of Building Cooling System";
- (c) Green Mark as-built score and declaration form by PE(Mech); and
- (d) Supporting documents listed in Form BCA-EB-RWCW01:


- As-built schematic drawing of air-conditioning system (water-side)
- As-built chiller plant room layout drawing indicating position of M&V instruments using symbol and color scheme
- As-built chiller part-load performance data sheet from equipment supplier
- As-built chilled water pump selection data sheet and pump curves showing design flow and head, pump hydraulic efficiency, motor absorbed power and efficiency
- As-built condenser water pump selection data sheet and pump curves showing design flow and head, pump hydraulic efficiency, motor absorbed power and efficiency
- As-built cooling tower selection data sheet and location plans
- Instruments' calibration certificates from accredited laboratory (temperature sensors) and batch calibration certificates from manufacturers (other M&V instruments)
- Construction drawings of the instruments showing the details of installation
- 2 week raw data of the following data points in excel format (.xls) with date and time stamp: chilled water supply temperature (°C); chilled water return temperature (°C); condenser water supply temperature (°C); condenser water return temperature (°C); chilled water flow rate (l/s); condenser water flow rate (l/s); electrical power of chiller(s), chilled water pump(s), condenser water pump(s) & cooling tower(s) (kW). The excel file should include all the chart plots specified in Annex B of the Code on Periodic Energy Audit of Building Cooling Systems
- Energy Audit report (format in accordance to Annex B of "Code on Periodic Energy Audit of Building Cooling Systems")

The Notice of Approval for completion of the retrofitting works will be given if the retrofitting works is successfully commissioned and the submissions are in order.

6.4 Documentary Evidence

The details of the documentary evidences required can be found in the Part 6: Scoring Methodology & Documentation for compliance. Building Owner / PE(Mech) shall ensure that these documents and records are available as evidences to demonstrate compliance with the environmental sustainability standard and criteria.

Part 7

SCORING METHODOLOGY & DOCUMENTATION

Dated: 1 July 2016

(I) Energy Related Requirements

Part 1 – Energy Efficiency

- ENRB 1-1 Thermal Performance of Building Envelope
- ENRB 1-2 Air Conditioning System
- ENRB 1-3 Natural Ventilation / Mechanical Ventilation
- ENRB 1-4 Artificial Lighting
- ENRB 1-5 Ventilation in Car parks
- ENRB 1-6 Ventilation in Common Areas
- ENRB 1-7 Lifts and Escalators
- ENRB 1-8 Energy Efficient Practices & Feature
- ENRB 1-9 Energy Policy & Management
- ENRB 1-10 Renewable Energy

ENRB 1-1 THERMAL PERFORMANCE OF BUILDING ENVELOPE

Objectives	Enhance overall thermal performance of building envelope to minimize heat gain thus reducing the overall cooling load requirement.
Applicability	Applicable to air-conditioned building spaces with aggregate areas $> 500 \text{ m}^2$.
Baseline Standard	ETTV stands for Envelope Thermal Transfer Value. Maximum permissible ETTV = 50 W/m ² The computation of ETTV shall be based on the methodology specified in the Code on Envelope Thermal Performance for Buildings issued by BCA.
Requirements	Up to 5 points can be scored for building envelope with better thermal performance than the baseline standard : 0.5 points for every reduction of 1 W/m ² in ETTV from the baseline of 50W/m ² Points scored = 0.5 x (50 – ETTV) where ETTV \leq 50 W/m ² For developments consisting of more than one building, the weighted average of the ETTVs based on the façade areas of these buildings shall be used as the basis for point allocation. ETTV Weighted Average = \sum (ETTV _{bldg} xA _{bldg}) / A _{devt} where ETTV _{bldg} = ETTV for a building (W/m ²) A _{bldg} = Summation of all facade areas that enclose all the air-conditioning areas (m ²) in a building A _{devt} = Summation of total applicable facade areas of all buildings within the development (m ²) (i.e. \sum A _{bldg}) Note: For buildings that are underground, full 5 points will be given.
Documentary Evidences	 Architectural elevation drawings showing the composition of the different façade or wall systems that are relevant for the computation of ETTV; Architectural plan layouts and elevations showing all the air-conditioning areas; Technical specifications of material showing the salient data of the material properties that were used for the façade or external wall system; and ETTV calculation.
References	Code on Envelope Thermal Performance for Buildings (2008) issued by BCA.

Worked	Example 1
Example for 1-1	$ETTV = 45 W/m^2$
	Points scored = 0.5 x (50 – ETTV)= 0.5 x (50 - 45) = 2.5 points
	Example 2
	ETTV = 35 W/m ²
	Points scored = 0.5 x (50 – ETTV) = 0.5 x (50 – 35) = 7.5 points > 5 points
	Therefore, points scored should be 5 points (max)
	Example 3
	A proposed building development comprises three building blocks. The individual
	ETTV of the each building computed are as follows :
	$ETTV_{bldg1} = 35 W/m^2$ $A_{bldg} = 5000 m^2$
	$ETTV_{bldg2} = 45 \text{ W/m}^2 \qquad A_{bldg} = 6800 \text{ m}^2 \qquad \qquad A_{devt} = 5000+6800+7500 \\ = 19300 \text{ m}^2 \qquad \qquad B_{bldg} = 7500 \text{ m}^2 \qquad \qquad$
	$ETTV_{bldg3} = 50 W/m^2$ $A_{bldg} = 7500 m^2$
	Therefore
	ETTV Weighted Average = \sum (ETTV _{bldg} xA _{bldg}) / A _{devt}
	$= (ETTV_{bldg1} \times A_{bldg1}) + (ETTV_{bldg2} \times A_{bldg2}) + (ETTV_{bldg3} \times A_{bldg3})$
	(A _{devt})
	$= (35 \times 5000) + (45 \times 6800) + (50 \times 7500)$ 19300
	$= 44.35 \text{ W/m}^2$
	Points scored = 0.5 x (50 – ETTV) = 0.5 x (50 – 44.35) = 2.83 points
	Note : Refer to the Code on Envelope Thermal Performance for Buildings for more detailed examples on how to compute the ETTV.

ENRB 1-2 AIR-CONDITIONING SYSTEM

Objectives	Encourage the use of better energy efficient energy consumption.	t air-conditioned ed	quipments to minimize
Applicability	Applicable to air-conditioned building area areas > 500 m ² .	as where its aggr	egate air-conditioned
	Scope covers all air-conditioned equipment	s for the buildings	as listed:
	 Chillers Chilled-Water Pumps Condenser Water Pumps Cooling Towers Air Handling Units (AHUs) Fan Coil Units (FCU) Direct-Expansion (DX) Unitary Air-Cinclude single-split units, multi-spilt unsystem 		•
Baseline Standard	1-2(a) Water Cooled Chilled-Water Plant		
	Baseline	Building Cooling Load	
		< 500 RT	≥ 500 RT
	Pre-requisite Requirements for regulated buildings Minimum System Efficiency for Water- cooled Chilled Water Plant	0.85 kW/RT	0.75 kW/RT
	Pre-requisite Requirements for GLS Goldplus projects Minimum system efficiency of central chilled-water plant	0.7 kW/RT	0.65 kW/RT
	Pre-requisite Requirements for GLS Platinum projects Minimum system efficiency of central chilled-water plant	0.7 kW/RT	0.65 kW/RT
	1-2(b) Air Cooled Chilled-Water Plant/ Ur	-	
	Baseline	Building Cooling Load	
	Pre-requisite Requirements Minimum System Efficiency for Air Cooled Chilled-Water Plant or Unitary Air-Conditioners	< 500 RT 1.1 kW/RT	≥ 500 RT 1.0 kW/RT
	Pre-requisite Requirements for GLS Goldplus projects Minimum System Efficiency for Air Cooled Chilled-Water Plant or Unitary Air-Conditioners	0.85 kW/RT	Not Applicable

	Pre-requisite Requirements for GLS <u>Platinum projects</u> Minimum System Efficiency for Cooled Chilled-Water Plant or Unit Air-Conditioners		Not Applicable
	<u>1-2(c) Air Distribution System</u> For air distribution fan systems, the far baseline as shown in the table below.	n motor power required	d shall not exceed th
	Constant Air Volume System	Variable Air Volu	-
	0.47 W/cmh	0.74 W/c	mh
Requirements for 1-2(a) & 1-2(b)	 Building cooling load ≥ 500 RT 14 points for achieving chiller place 	ant efficiency of 0.75 k	W/RT.
for 1-2(a) &	 Building cooling load ≥ 500 RT 14 points for achieving chiller plate 0.35 point for every percentage better than 0.75 kW/RT. 	ant efficiency of 0.75 k	W/RT.
for 1-2(a) &	 Building cooling load ≥ 500 RT 14 points for achieving chiller plate 0.35 point for every percentage better than 0.75 kW/RT. Points scored = 0.35 x (% improcession) 	ant efficiency of 0.75 k	W/RT.
for 1-2(a) &	 Building cooling load ≥ 500 RT 14 points for achieving chiller plate 0.35 point for every percentage better than 0.75 kW/RT. 	ant efficiency of 0.75 k	W/RT.
for 1-2(a) &	 Building cooling load ≥ 500 RT 14 points for achieving chiller plate 0.35 point for every percentage better than 0.75 kW/RT. Points scored = 0.35 x (% improcession) 	ant efficiency of 0.75 k e improvement in the vement)	W/RT. chiller plant efficiend
for 1-2(a) &	 Building cooling load ≥ 500 RT 14 points for achieving chiller plate 0.35 point for every percentage better than 0.75 kW/RT. Points scored = 0.35 x (% improblement of the second seco	ant efficiency of 0.75 kV e improvement in the vement)	W/RT. chiller plant efficiend

1-2 (b) Air Cooled Chilled-Water Plant

Building cooling load ≥ 500 RT

- 14 points for achieving chiller plant efficiency of 1.0 kW/RT.
- 0.25 points for every percentage improvement in the air-conditioning system efficiency better than 1.0 kW/RT.
- Points awarded = 0.25 x (% improvement)

Building cooling load < 500 RT

- 14 points for achieving chiller plant efficiency of 1.1 kW/RT.
- 0.2 point for every percentage improvement in the air-conditioning system efficiency better than 1.1 kW/RT.
- Points awarded = 0.2 x (% improvement)

Important notes :

- (i) Where there is a combination of central chilled-water plant with unitary airconditioned system, the computation for the points scored will only be based on the air-conditioning system with a larger aggregate capacity.
- (ii) The building cooling load and chiller plant system efficiency can be determined based on the measured operating conditions of the system; which shall include the chillers, pumps, cooling towers and associated equipment.
- (iii) For simplicity and consistency, the expected operating efficiency will be based on the total energy consumption over total hourly cooling loads during the specified building operation hours as defined below :

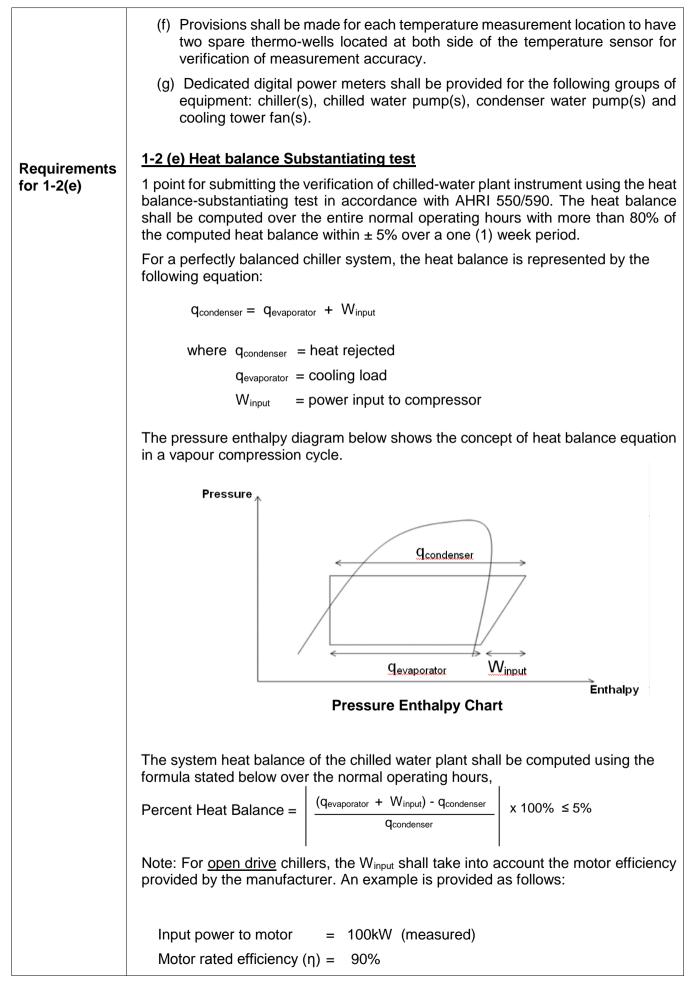
Office Buildings:

Monday to Friday : 9 am to 6 pm

Retail Malls :

Monday to Sunday : 10 am to 9 pm

Hotels and serviced apartments :

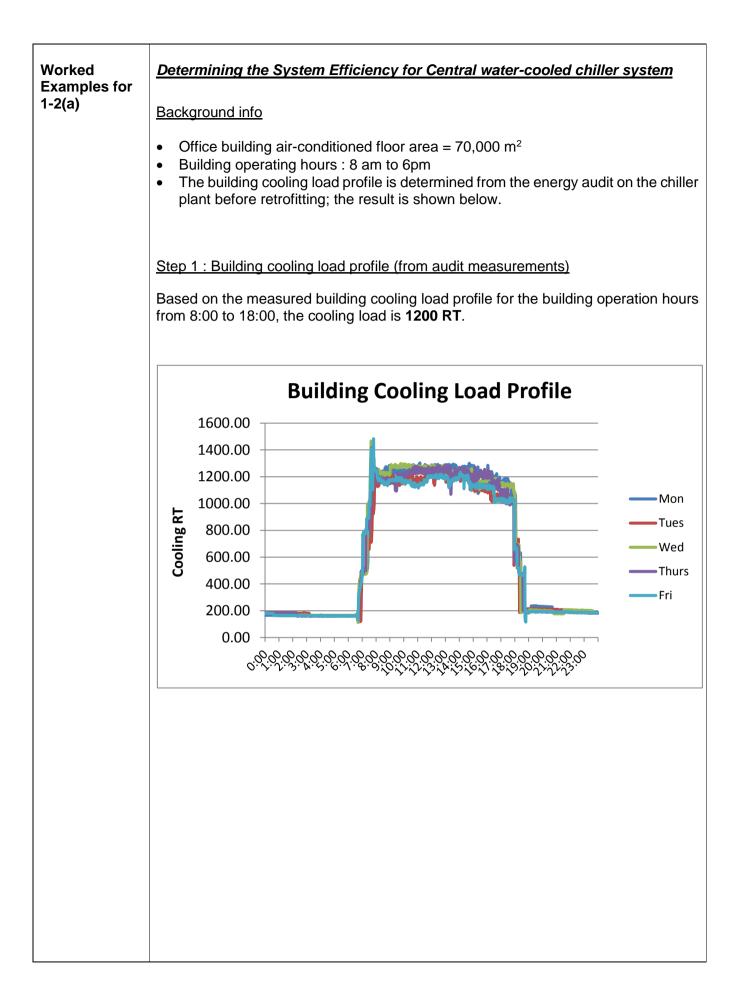

Monday to Sunday : 24 Hours (day time load: 7am to 11pm; night time load: 11pm to 7am)

Other Building Types

To be determined based on operating hours

(iv) For the design system efficiency, the expected chilled water plant efficiency shall be calculated based on the measured building cooling load profile through

	 an Energy Audit before the retrofit. The energy audit shall be performed by an accredited Energy Services Company (ESCO) or a Professional Mechanical Engineer (Mech). (v) For air-cooled variable refrigerant flow system and unitary air-conditioners, the 										
	efficiency shall be computed based on the efficiency of rated capacity or at the expected operating part-load condition of the outdoor condensing units.										
Requirements for 1-2(c)	 <u>1-2 (c) Air Distribution System (Up to 8 points)</u> 0.15 point for every percentage improvement in the air distribution system efficiency above the baseline. 										
	Constant Air Volume System Variable Air Volume System										
	0.47 W/cmh 0.74 W/cmh										
	Points scored = 0.15 x (% improvement)										
	• The efficiency of the air distribution system can be determined from the rated fan power and air flowrate of the AHU and FCU or by site measurement.										
	1-2 (d) Instrumentation for Monitoring Central Chilled Water Plant Efficiency										
Requirements for 1-2(d)	 1 point for the provision of permanent measuring instruments for monitoring of water-cooled and air-cooled chilled-water plant efficiency. The installed instrumentation shall have the capability to calculate resultant chilled-water plant efficiency (i.e. kW/RT) within ± 5 % of the true value and in accordance with ASHRAE Guide 22 and AHRI 550/590. The following instrumentation and installation are also required to be complied with : (a) Location and installation of the measuring devices to meet the manufacturer's recommendation. 										
	(b) Data Acquisition system i.e. Analog-to-digital or A/D converter used shall have a minimum resolution of 16 bit. For example,										
	 The specification for the A/D converter of the BTU meter should have a minimum resolution of 16-bit. This applies to direct data acquisition from the BTU meter. 										
	 For data acquisition using Building Management System (BMS), the specification of the specific Digital Direct Controller (DDC) connecting the temperature sensors should have a minimum resolution of 16-bit. 										
	(c) All data logging with capability to trend at 1 minute sampling time interval.										
	(d) Flow meters for chilled-water and condenser water loop shall be ultrasonic / full bore magnetic type or equivalent.										
	(e) Temperature sensors are to be provided for chilled water and condenser water loop and the measurement system shall have an end-to-end uncertainty from the temperature sensors to the read out devices not exceeding ± 0.05 °C over the entire measurement or calibration range. All thermo-wells shall be installed in a manner that ensures that the sensors can be in direct contact with fluid flow.										



	Adjusted power input to compressor	W_{input} = 100kW x 90% = 90kW
	these losses could be accounted for. T	pumps constitute a substantial heat gain, he values shall be determined from motor ovided by the manufacturer. Examples are
	(a) For chilled water pump(s) adjus	stment.
	Motor input power (measured)	
	, ,	= 90% (B)
	Pump rated efficiency (η)	= 80% (C)
	Hydraulic losses	= (A) x (B) x [(100% – (C)]
		= 30kW x 90% x (100% - 80%)
		= 5.4 kW
	Adjusted total input power W _{input}	= kW _i (chillers) + 5.4kW
	where kW_i (chillers) = adjusted po	ower input to compressor, kW
	(b) For condenser water pump(s) a	djustment,
	Motor input power (measured)	= 20 kW (A)
	Motor rated efficiency (η)	= 90% (B)
	Pump rated efficiency (η)	= 80% (C)
	Hydraulic losses	= (A) x (B) x [(100% – (C)]
		= 20kW x 90% x (100% - 80%) = 3.6 kW
	Adjusted $q_{condenser(adj)} = q_c$	ondenser - 3.6kW
Requirements	1-2 (f) Variable speed control devices	for chiller plant equipment (1 point)
for 1-2(f)	1 point can be scored if there are prov	visions of variable speed controls for plant ad cooling tower fans to ensure better part-
	1-2 (g) Sensors or similar automatic of	control devices (1 point)
Requirements for 1-2(g)	•	nilar automatic control devices are used to the concentration of carbon dioxide (CO ₂) nded IAQ Parameters of SS 554.
	Carbon dioxide acceptable range: \leq 70	0 ppm above outdoor.
	For 1-2(a) & 1-2(b) – Water-cooled and	Air-cooled chilled water plants

Documentary Evidences for 1-2(a) & 1-2(b)	P D ct D pl	rofessional E etailed calcu hiller plant as rawings shov ant; rawings shov	ingine Ilatior show ving t ving t	eer (Me ns of th wn in th he prop	ch) o le pro e wor bosed bosed	r Ener posec ked ex chilled layout	gy A d eq kam d wa t of t	Auditor Juipme Iples 1 ater sch	registe nt effic -2(a), nematic	red with B iency of th of the retr chiller plar	ndorsed by a CA. he retrofitted rofitted chiller ht equipment; ulation report
	sł • C ai	nall be submi	itted. quipm ons.	nent (i.e	. chill	ers, pu	ımp	s, cool	ing tow	ers) techn	ical schedule
	ID	Descriptio	n	Name p motor (Pum Hea (m)	d	Flow (L/	S)	Pump / Fan efficiency	Motor Efficiency
	CHWP	1 Chilled wate	er	55 k\	N	30n	n	15′	1.2	85%	95%
	CHWP	2 Chilled wat pump 2 Condenser		30 k\	N	30n	n	75	.6	85%	95%
	CWP-	water pump	o 1	45 k\ 22 k\		20n 20n		18		85% 85%	95% 95%
	CT-1	water pump Cooling tow		45 k\		- 201		n 94.5 130		75%	93%
	CT-2	Cooling tow 2	ver	45 kW		-		13	80	75%	92%
	ID	Description	1	Гуре	pl mo	ime ate otor W)	Ca	ooling pacity (RT)	Chilled water LWT	I Chilled water ∆T	Efficiency kW/RT
	CH-1	Chiller 1	Cer	ntrifugal	5	50	1	1000	6.7 °C	5.5°C	0.55
	CH-2	Chiller 2		/SD crew	2	60		500	6.7 °C	5.5°C	0.52
Documentary Evidences for 1-2(c)	• D ai w		latior syst bles 1	ns of the tem in -2(c);	e over the p	all imp rescrit	bed	tabula	ited for	mats as s	ciency of the shown in the

	• De of	the instruments	drawings of the s' locations.	e chiller plant roo		•	
		Description	uments to be p	Measurement/ Calibration range	following forma Measurement Uncertainty	at :- Last Calibration Date	
	TT01	CHWS Temperature	10K Ω Thermistor	0°C - 40°C	± 0.05°C	10/10/2012	
	TT02	CHWR Temperature	10K Ω Thermistor	0°C - 40°C	± 0.05°C	10/10/2012	
	TT03	CWS Temperature	10K Ω Thermistor	0°C - 40°C	± 0.05°C	10/10/2012	
	TT04	CWR Temperature	10K Ω Thermistor	0°C - 40°C	± 0.05°C	10/10/2012	
	FM01	CHW Flow	Magnetic Full Bore	30 l/s- 200 l/s	± 0.5%	10/10/2012	
	FM02	CW Flow	Magnetic Full Bore	30 l/s- 200 l/s	± 0.5%	10/10/2012	
	kW01	Chiller 1 Power	True RMS, 3 phase	60 – 600 kW	± 0.5%	10/10/2012	
	kW02	Chiller 2 Power	True RMS, 3 phase	60 – 600 kW	± 0.5%	10/10/2012	
	kW03	CHW Pump 1 & 2 Power	True RMS, 3 phase	20 – 200 kW	± 0.5%	10/10/2012	
	kW04	CW Pump 1 & 2 Power	True RMS, 3 phase	20 – 200 kW	± 0.5%	10/10/2012	
	kW05	CT 1 & 2 Power	True RMS, 3 phase	15 – 150 kW	± 0.5%	10/10/2012	
Documentary Evidences for 1-2(e)	pla ins ex <u>For 1-2</u> • He ins	ant efficiency i strumentation amples 1-2(d). (e) – Heat Bala eat balance sub	n kW/RT to b specification / ance Substant ostantiating test shall be submit	tainty of measu e within ± 5 % calibration ce <u>iating Test</u> result verifying t tted in the form	5 of the true ertificates. Ret	value based o fer to Worke ed-water plan	
Documentary Evidences for 1-2(f)	• Te the	ese devices are an layouts sho	cations of the c e used; wing the locati	ontrol devices a ons of variable lled water pum	speed control	devices for the	

Documentary Evidences for 1-2(g)	 For 1-2(g) – Sensors for Carbon Dioxide Technical specifications of the control devices and a write up/drawings on how these devices are used; Plan layouts showing the locations and the types of control devices used to regulate fresh air intake or schematic print-out from BMS.
References	CP 24:1999 - Code of Practice for Energy Efficiency Standard for Building Services and Equipment CP 13:1999 - Code of Practice for Mechanical ventilation and Air-Conditioning in Buildings
	ASHRAE Guideline 22 – Instrumentation for Monitoring Central Chilled water Plant Efficiency by American Society of Heating, Refrigerating and Air-Conditioning Engineer (ASHRAE)
	AHRI Standard 550/590 – Performance Rating of Water Chilling and Heat Pump Water–Heating Packages Using the Vapour Compression Cycle by Air- Conditioning, Heating and Refrigeration Institute(AHRI)
	Singapore Standard 591 – Code of Practice for long term measurement of central chilled water system energy efficiency

Worked Examples for	From energy audit, the buildin	g cooling load profile is shown:-	
1-2(a)	Time	Average Cooling Load (RT)	
	0:00	190	
Continued	1:00	190	
	2:00	190	
	3:00	190	
	4:00	190	
	5:00	190	
	6:00	190	
	7:00	1400	
	8:00	1200	
	9:00	1200	
	10:00	1200	
	11:00	1200	
	12:00	1200	
	13:00	1200	
	14:00	1200	
	15:00	1200	
	16:00	1150	
	17:00	1150	
	18:00	1150	
	19:00	190	
	20:00	190	
	21:00	190	
	22:00	190	
	23:00	190	
	The chiller plant system efficiency loads measured during the speci building): (a) 0900 to 1600 hrs : 1200 (b) 1600 to 1800 hrs : 1150		ling fice

inued		Equipment	C	Office hours (09 hrs)	00 to 180	D After C	Office hou 0900 hr			
indod	Chillers	3	-	nos. x 700 RT 2 in operation &	1 stand-by		x 200 RT peration &	1 stand-l		
	Chilled	Water Pump		nos. x 45 kW ? in operation &	1 stand-by		2 nos. x 15 kW (1 in operation & 1 stand-by			
	Conde	nser Water P		nos. x 55 kW ? in operation &	1 stand-by		x 18.5 kW peration &	1 stand-		
	Cooling	g Towers	3	nos. x 900 RT,	each havir	ng 3 fans x	7.5 kW			
		uuon as illiist	rated in S	tep 4 & 5 are b	based on th	he attinity l	aws assur	ning that		
	syste <u>Step 3 :</u> Chillers	em curve rem Water-coole in operation	nains unch ed Chiller n are 2 n	anged. <u>s' Performance</u> os. x 700 RT d	_	e hours a		-		
	syste Step 3 : Chillers after of Perforn shown	em curve rem Water-coole in operation fice hour op nance data below:-	nains unch ed Chiller n are 2 n eration. for selec Chiller	s' Performance os. x 700 RT d ted chillers (7 Chiller	uring offic		nd 1 no. > y chiller	200 R1		
	syste <u>Step 3 :</u> Chillers after of Perforn	em curve rem Water-coole in operation fice hour op nance data	nains unch ed Chiller n are 2 n eration. for selec	s' Performance	uring offic	s given b	nd 1 no. > y chiller	200 RT		
	syste Step 3 : Chillers after off Perforn shown	em curve rem Water-coole in operation fice hour op nance data below:- Capacity	nains unch ed Chiller n are 2 n eration. for selec Chiller Input Power	s' Performance os. x 700 RT d eted chillers (7 Chiller Efficiency	uring offic 00 RT) a Evap CHWST	s given b orator CHWRT	nd 1 no. > by chiller Cond CWRT	c 200 RT supplier enser CWST		
	syste Step 3 : Chillers after of Perforn shown	em curve rem Water-coole in operation fice hour op nance data below:- Capacity (RT)	ains unch d Chiller n are 2 n eration. for selec Chiller Input Power (kW)	s' Performance os. x 700 RT d ted chillers (7 Chiller Efficiency kW/RT	uring offic 00 RT) a Evap CHWST (°C)	s given b orator CHWRT (°C)	nd 1 no. > by chiller Cond CWRT (°C)	c 200 RT supplier enser CWST (°C)		
	syste <u>Step 3 :</u> Chillers after of Perforn shown <u>%</u> Load 100	em curve rem Water-coole in operation fice hour op nance data below:- Capacity (RT) 700	ains unch ed Chiller n are 2 n eration. for selec Chiller Input Power (kW) 363	s' Performance os. x 700 RT d eted chillers (7 Chiller Efficiency kW/RT 0.519	uring offic 00 RT) a Evap CHWST (°C) 6.67	s given b orator CHWRT (°C) 12.31	nd 1 no. > by chiller Cond CWRT (°C) 34.80	enser CWST (°C) 29.68		
	syste <u>Step 3 :</u> Chillers after of Perforn shown <u>6</u> Load 100 90	em curve rem Water-coole in operation fice hour op nance data below:- Capacity (RT) 700 630	ains unch d Chiller n are 2 n eration. for selec Chiller Input Power (kW) 363 329	s' Performance os. x 700 RT d eted chillers (7 Chiller Efficiency kW/RT 0.519 0.522	uring offic 00 RT) a Evap CHWST (°C) 6.67 6.67	s given b orator CHWRT (°C) 12.31 12.31	nd 1 no. > y chiller Cond CWRT (°C) 34.80 34.29	enser CWST (°C) 29.68 29.68		
	syste <u>Step 3 :</u> Chillers after of Perforn shown <u>6</u> Load 100 90 80	em curve rem Water-coole in operation fice hour op nance data below:- Capacity (RT) 700 630 560	nains unch ed Chiller n are 2 n eration. for selec Chiller Input Power (kW) 363 329 291	s' Performance os. x 700 RT d eted chillers (7 Chiller Efficiency kW/RT 0.519 0.522 0.520	uring offic 00 RT) a Evap CHWST (°C) 6.67 6.67	s given b orator CHWRT (°C) 12.31 12.31 12.31	nd 1 no. > y chiller Cond CWRT (°C) 34.80 34.29 33.78	200 R supplier enser (°C) 29.68 29.68 29.68		
	syste <u>Step 3 :</u> Chillers after of Perforn shown <u>%</u> Load 100 90 80 70	em curve rem Water-coole in operation fice hour op nance data below:- Capacity (RT) 700 630 560 490	ains unch d Chiller n are 2 n eration. for selec Chiller Input Power (kW) 363 329 291 260	s' Performance os. x 700 RT d eted chillers (7 Chiller Efficiency kW/RT 0.519 0.522 0.520 0.533	uring offic 00 RT) a Evap CHWST (°C) 6.67 6.67 6.67	s given b orator CHWRT (°C) 12.31 12.31 12.31 12.31	nd 1 no. > y chiller Cond CWRT (°C) 34.80 34.29 33.78 33.28	200 RT supplier enser CWST (°C) 29.68 29.68 29.68		
	syste <u>Step 3 :</u> Chillers after of Perforn shown <u>60</u>	em curve rem Water-coole in operation fice hour op nance data below:- Capacity (RT) 700 630 560 490 420	nains unch ed Chiller n are 2 n eration. for selec Chiller Input Power (kW) 363 329 291 260 227	s' Performance os. x 700 RT d eted chillers (7 Chiller Efficiency kW/RT 0.519 0.522 0.520 0.533 0.543	uring offic 00 RT) a Evap CHWST (°C) 6.67 6.67 6.67 6.67 6.67	s given b orator CHWRT (°C) 12.31 12.31 12.31 12.31 12.31	nd 1 no. > y chiller Cond CWRT (°C) 34.80 34.29 33.78 33.28 32.77	200 RT supplier enser CWST (°C) 29.68 29.68 29.68 29.68 29.68		
	syste <u>Step 3 :</u> Chillers after of Perforn shown <u>60</u> 50	em curve rem Water-coole in operation fice hour op nance data below:- Capacity (RT) 700 630 560 490 420 350	nains unch ed Chiller n are 2 n eration. for selec Chiller Input Power (kW) 363 329 291 260 227 195	s' Performance os. x 700 RT d oted chillers (7 Chiller Efficiency kW/RT 0.519 0.522 0.520 0.533 0.543 0.563	uring offic 00 RT) a Evap CHWST (°C) 6.67 6.67 6.67 6.67 6.67 6.67	s given b orator CHWRT (°C) 12.31 12.31 12.31 12.31 12.31 12.31	nd 1 no. > y chiller Cond CWRT (°C) 34.80 34.29 33.78 33.28 32.77 32.27	200 RT supplier enser CWST (°C) 29.68 29.68 29.68 29.68 29.68		
	syste <u>Step 3 :</u> Chillers after of Perforn shown <u>%</u> Load 100 90 80 70 60 50 40	em curve rem Water-coole in operation fice hour op nance data below:- Capacity (RT) 700 630 560 490 420 350 280	nains unch ed Chiller n are 2 n eration. for selec Chiller Input Power (kW) 363 329 291 260 227 195 165	s' Performance os. x 700 RT d oted chillers (7 Chiller Efficiency kW/RT 0.519 0.522 0.520 0.533 0.543 0.563 0.596	uring offic 00 RT) a Evap CHWST (°C) 6.67 6.67 6.67 6.67 6.67 6.67 6.67	s given b orator CHWRT (°C) 12.31 12.31 12.31 12.31 12.31 12.31 12.31	nd 1 no. > y chiller Cond CWRT (°C) 34.80 34.29 33.78 33.28 32.77 32.27 31.76	200 RT supplier enser CwST (°C) 29.68 29.68 29.68 29.68 29.68 29.68 29.68		

operation % Load KW/K1 B C D Ios. x 700RT 85.7% 0.521 Ios. x 700RT 82.1% 0.520	(kW) E = A x D 625.2 598.0
ios. x 700RT 82.1% 0.520	598.0

Worked	<u>Step 4 : 0</u>	Chilled \	Wate	r Pumps' Pe	erfor	mance						
Examples for 1-2(a)				⟨W pumps v √ariable Spe				n duri	ng of	fice hours and are		
Continued				np head = 2				udit)				
	.,			cy = 86.8 %		•	•••		lition			
	. ,	•		cy = 94.2 %		• .						
	(10) 101		CICIN	Jy = 04.2 70	aru	osigir op				(a)(b)		
	(v) Motor absorbed power (kW) is calculated from = $\frac{(Q)(\rho)(g)(h)}{(10^6)(\eta_p)(\eta_m)}$											
	w	where Q=water flow rate in L/s p=density of water = 1000 kg/m ³ g=gravitational acceleration = 9.81 m/s ² h=static pressure head m η_p = pump efficiency η_m =motor efficiency										
				Chilled	Wate	er Pump	1&2(4	45 kW)			
	%	Α		В		С	D		E = (A x 1000 x 9.81 x B) / (10 ⁶ x C x D)		
	Load	Rate Flow (Rated Head (m)		lotor iciency (%)	Pur Efficio (%	ency	Pum	p input power (kW)		
	100	106.	.1	28		94.2	86	.8		35.64		
	90	95.4	9	22.68		94.2	84.	.2		26.76		
	85.7	90.	9	20.56		94.2	84	1		23.17		
	80	84.8		17.92		94.2	83.			19.00		
	70	74.2		13.72		94.2	79.			13.27		
	60	63.6	6	10.08		94.2	77.	.3		8.64		
	The 2 no 85.7%	g load	No.	ps are desig of CHW pun in operation		to opera	, Pu	ump in	put	part-load condition Total CHW Pump Power (kW)		
	А			В		С		D		E = B x D		
	120	00		2 nos.		85.7%		32.33	3	64.66		
	115	50		2 nos.		85.7%		32.33	}	64.66		
	Note: It the load		omme	ended to lim	it the	e speed	of the	pump	to a r	ninimum of 60% of		

ntinued	ins (ii) Op (iii) Pu	talled perating mp eff	with V g pum icienc	′ariable Spe p head = 32 y = 88.5 % y = 94.7 % 3	ed Drives 2 m (from o at design o	(VS ener oper	D) gy audit) ation cond	ition	and all pumps are			
				Condense	er Water Pu	ımp	1 & 2 (55 k	W)				
		A B C D $E = (A \times 1000 \times 9.81)$ B) / (10% x C x D)										
	% Load	Rat Flow		Rated Head (m)	Motor Efficienc (%)	y E	Pump Efficiency (%)	Pu	mp input power (kW)			
	100	132	.51	32	94.7		88.5		49.63			
	90	119	.26	25.92	94.7		85.9		37.28			
	85.7	113	.56	23.5	94.7		85.5		32.33			
	82.1	108	3.8	21.57	94.7		85.2		28.53			
	80	106	.01	20.48	94.7		85		26.46			
	70	92.	76	15.68	94.7		81.4		18.51			
	60	79.	51	11.52	94.7		78.8	12.04				
	part-load	l i.e. at I load	1200	of CW pump of cw pump	i.e. 85.7%	ad	Pump in power (I	put	Total CW Pump Power (kW)			
	A			В	С		D		E = B x D			
	120	0		2 nos.	85.7	%	32.33	3	64.66			
		0		2 nos.	82.1	~ (28.53)				

Worked Examples for 1-2(a) Continued	 (ii) Heat rejection ((iii) Total heat rejection ((iv) Each tower with (v) Fan Motor efficient (vi) Fan motor input 	towers will be i capacity per co ction for 2 nos. h 3 fan cells, e iency = 92 % it power for ead	n operation ooling tower cooling tow ach fan mote ch tower = (7	with V = 900 ers = or = 7 7.5 kV	900 RT x 2 = 1800 RT						
	Cooling load (RT)	Chiller Input	Power (kW)	Rec	quired Heat Rejection (RT)						
	А	В			C = A + (B / 3.517)						
	1200										
	1150	598	3		1320.03						
	Cooling load (RT)	No. of CT in operation	Total CT F Rejectio Capacity (n	Percentage Loading for Required & Available Heat Rejection (RT)						
	Α	В	D		E = C / D						
	1200	2	1800		76.5 %						
	1150	2	1800		73.3 %						
	48.92 kW Based on the fan lav <u>Fans F</u> Fans I At 76.6% speed (via <u>21.90 kW</u>	v, Power _{@ 76.6%} Power _{@ 100%} a VSD), total c	$= \left(\frac{F}{F} \right)$	<u>ans S</u> ans S rs' far	$\frac{peed_{@~76.6\%}}{peed_{@~100\%}} \int_{0}^{3} \frac{3}{(0.765)^{3}} = \frac{1}{(0.733)^{3}} = \frac{1}{(0.75)^{3}} = \frac{1}{(0.75)^{3$						
	Cooling Load (RT)	Required Pa for C		Total	Fan Motor Power at required part load (kW)						
	1200 RT	76.59	%		21.90						
	1150 RT	73.39			19.27						
	of 50% of the rated of <u>Step 7 : System Effici</u>	capacity. <u>ency</u>			bling tower fans to a minimum loads is tabulated below.						

Worked Examples for 1-2(a)	Time	Average Cooling Load	Chillers Power Input	CHW Pumps Power	CW Pumps Power	CT power	Total Power Input	
		(RT)	(kW)	(kW)	(kW)	(kW)	(kW)	
Continued	9:00	1200	625.2	46.34	64.66	21.90	758.1	
	10:00	1200	625.2	46.34	64.66	21.90	758.1	
	11:00	1200	625.2	46.34	64.66	21.90	758.1	
	12:00	1200	625.2	46.34	64.66	21.90	758.1	
	13:00	13:00 1200		46.34	64.66	21.90	758.1	
	14:00	1200	625.2	46.34	64.66	21.90	758.1	
	15:00	1200	625.2	46.34	64.66	21.90	758.1	
	16:00	1150	598	40.9	64.66	19.27	722.83	
	17:00	1150	598	40.9	64.66	19.27	722.83	
	18:00	1150	598	40.9	64.66	19.27	722.83	
	Total (0900 to 1800)	∑ CL _i = 11850	6170.4	447.08	646.6	211.11	∑ TPL _i = 7475.19	
	Efficiency k	W/RT	0.521	0.038	0.055	0.018	0.631	
		illed water pumps0.038ondenser water pumps0.055		8				
	Total			0.018 0.63		< 0.75 kW/RT		
	14 points for m	eeting the	prescribe					
	0.35 point for over the baseli		entage im	provement i	n the chille	d-water pla	Int efficiency	
	Therefore, poir	nts scored	= 14 + 0.3	35 x (% impr	ovement)			
		:	= 14 + 0.3	35 x [(0.75 –	0.631)/0.75	5] x100		
		:	= 14 + 0.3	35 (15.89)				
		:	= 19.56 p	oints				

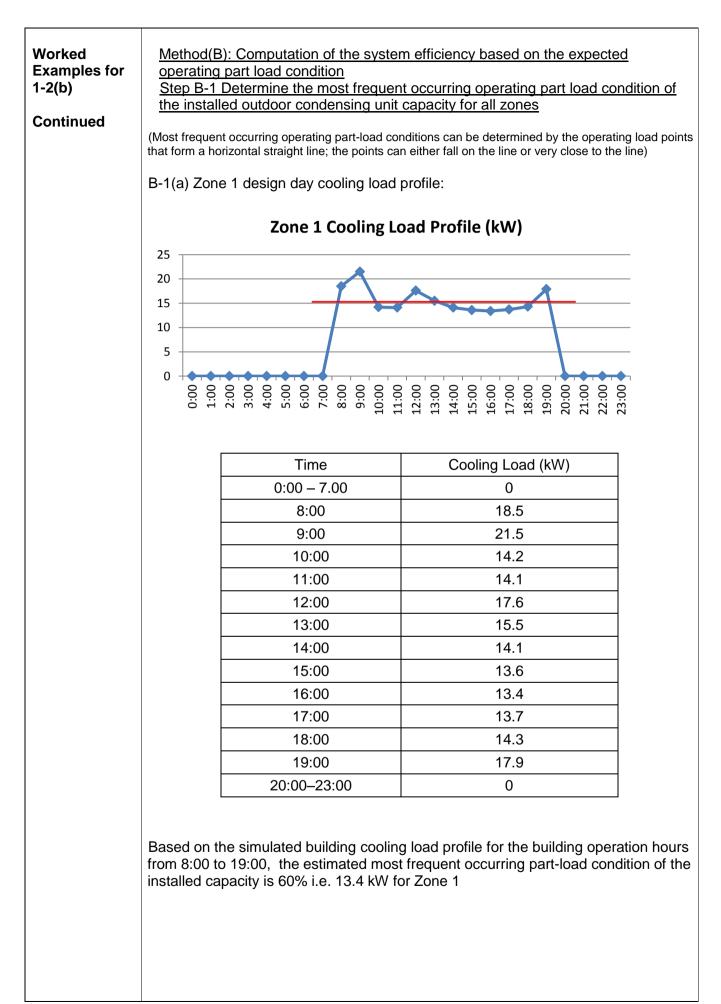
Worked Examples for 1-2(b)

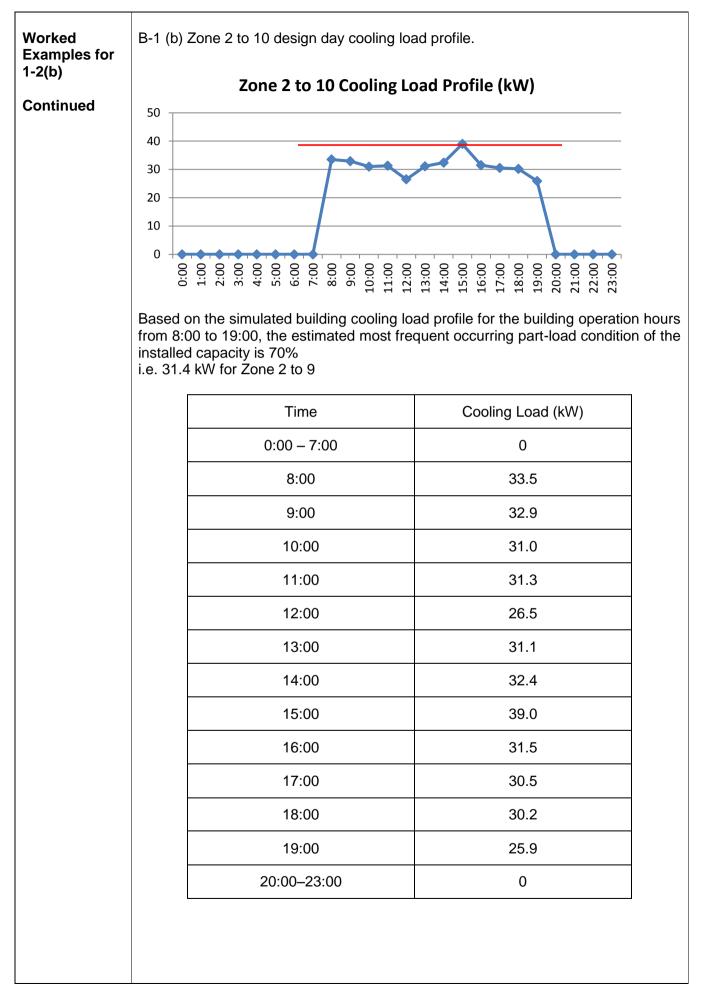
VRF System

<u>Determining the System Efficiency for Unitary Air-Conditioners/ Condensing</u> <u>Units - VRF System For total cooling load < 500RT</u>

Method (A): Computation of system efficiency based on the rated capacity Determine the overall efficiency of the VRF system at full load conditions:

Floor	Location Served		f VRF Outdoor Co	ondensing
		Total Cooling Capacity (kW)	Input (kW)	COF
	FCC Room	3.5	1.25	2.8
1	Lift Lobby + Corridor	22.4	5.24	4.27
	Reception	22.4	5.24	4.27
	Office	44.8	10.5	4.27
2	Office	44.8	10.5	4.27
	Lift lobby + Corridor	22.4	5.24	4.27
	Office	44.8	10.5	4.27
3	Office	44.8	10.5	4.27
	Lift lobby + Corridor	22.4	5.24	4.27
	Office	44.8	10.5	4.27
4	Office	44.8	10.5	4.27
	Lift lobby + Corridor	22.4	5.24	4.27
F	Office	63.3	18.4	3.44
5	Lift lobby + Corridor	22.4	5.24	4.27
	Total	447.6 kW	108.85	

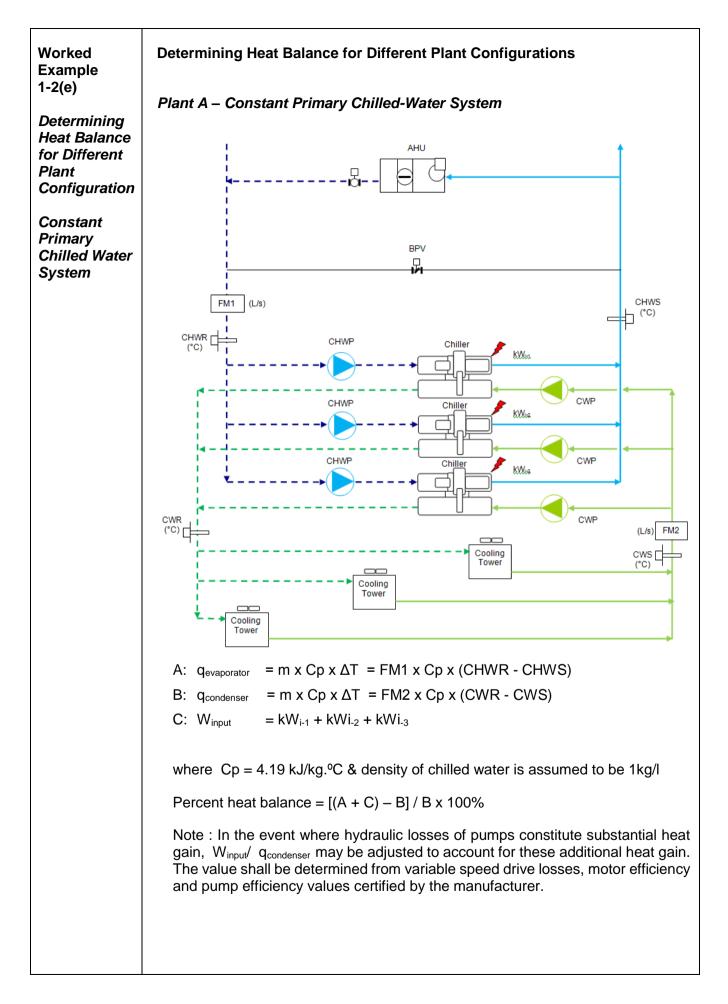

For Building cooling load < 500 RT, 14 points for achieving chiller plant efficiency of 1.1 kW/RT.

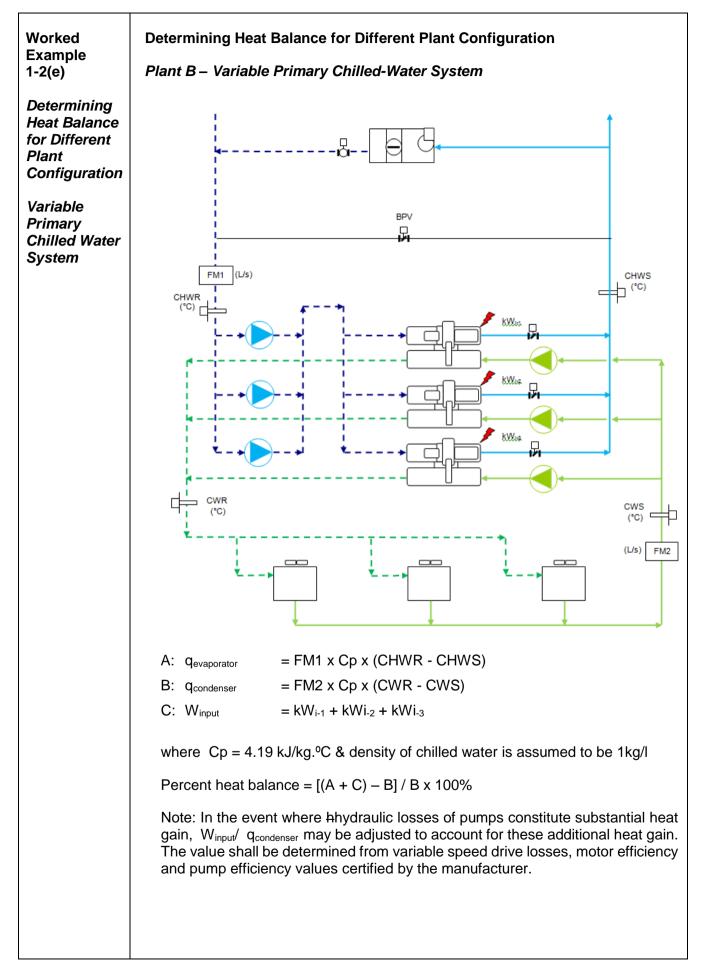

0.2 point for every percentage improvement in the air-conditioning system efficiency better than 1.1 kW/RT.

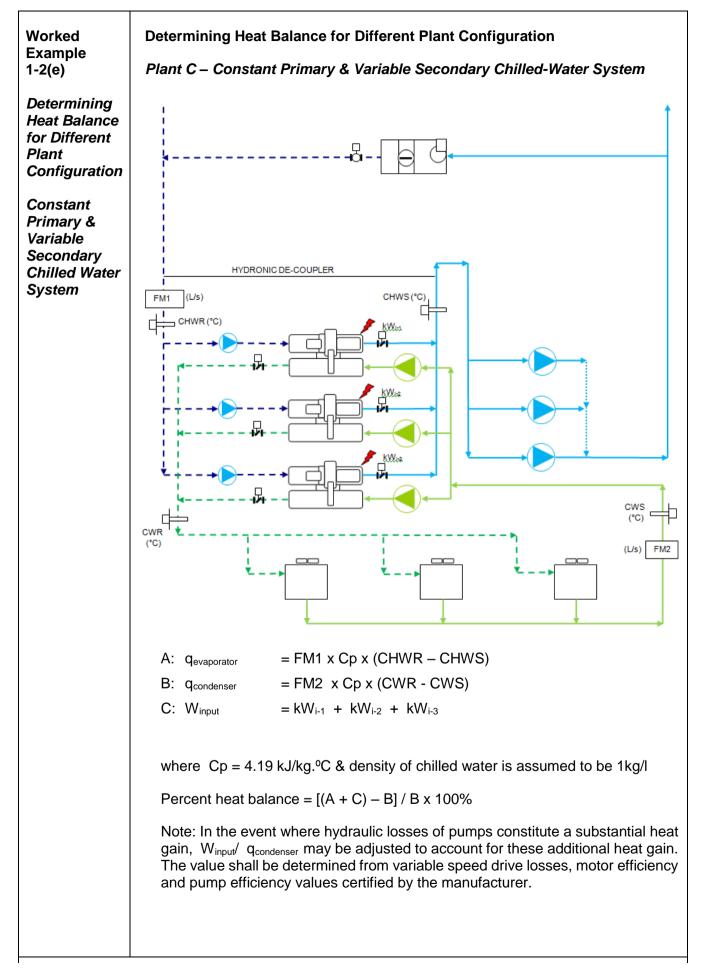
Therefore, points scored = $14 + 0.2 \times (\% \text{ improvement})$

= 14 + 0.2 x (21.82)

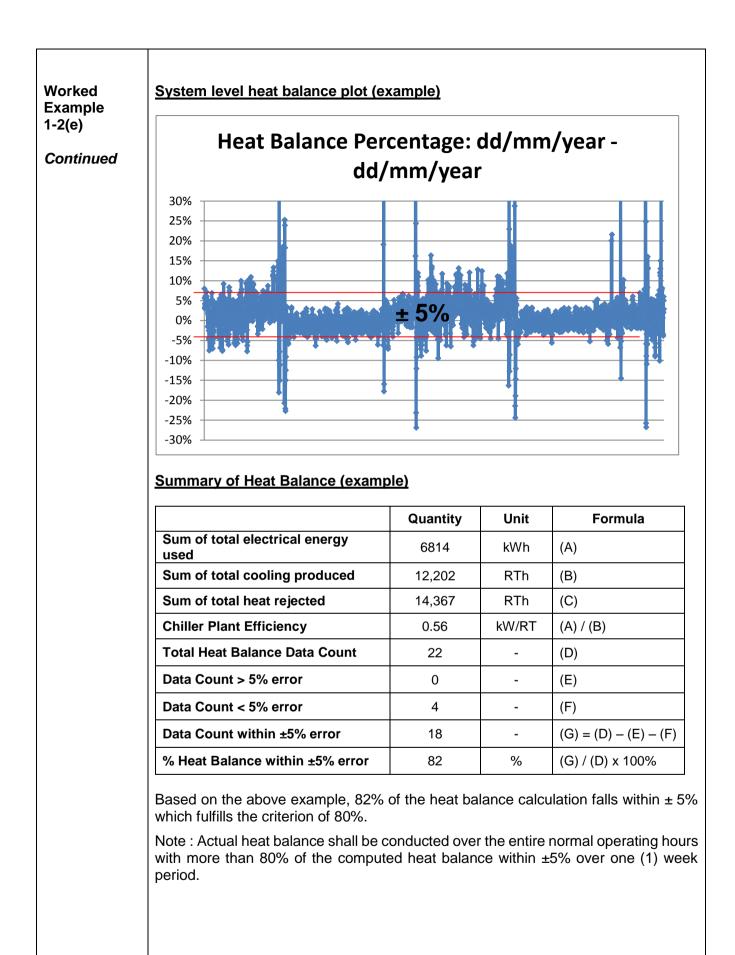
= 18.36 points






Worked	Step B-2	Propos	sed VRF S	System Sch	nedule					
Examples for 1-2(b)						ion of VRF	Outdoor	Condensi	ng Unit	
Continued	System	Floor	Location Served	Total Co Capacity		Power Inp	out (kW)	COF	þ	KW/RT
				Full Installed Capacity	60% Part load	Full Installed Capacity	60% Part Ioad	Full Installed Capacity	60% Part load	60% Part load
		1	FCC Room							
	1	1	Lift Lobby + Internal Corridor	22.4	13.4	5.24	2.55	4.2	5.25	0.67
		1	Reception							
	System	Floor	Location Served	Full Installed Capacity	70% Part Load	Full Installed Capacity	70% Part Load	Full Installed Capacity	70% Part Load	70% Part Load
			Office	_						
			Office							
	2 to 9	2 to 9	Office Office	44.8	21.4	10.5	6.00	4.29	5.02	0.70
	2 10 9	2 10 9	Office	44.0	31.4	10.5	6.28	4.29	5.02	0.70
			Lift Lobby	-						
			Lobby 2							
			<u>nine the s</u> ad condit	<u>ystem effic</u> ion	iency o	f the VRF	system	s at the e	xpecte	<u>ed</u>
				VRF syster	ms serv	/ing the bu	uilding is	8:		
	Syster	n	Floor	Total Powe (kW)			Required ing (kW)		al Requ poling (F	
	1		1	2.55			13.4		3.81	
	2 to 9)	2 to 9	50.24	4	2	51.2		71.42	
	Total	:		52.7	9				75.23	
	System	efficien	icy for the	VRF syste	em = \$	52.79 / 75				
	14 noint	s for m	eetina the	prescribed	l syster	n efficienc		<u>0 kW/RT</u> kW/RT		
	0.6 poir	its for e	•	entage imp	•		•		ystem	
		•		x (% impro	vemer	nt)				
		=	= 14 + 0.2	[(1.1 – 0.7	0)/1.1x	100%] =	21.27 p	ooints > 2	0 poin	ts
	There	fore, po	pints score	ed is 20 po	ints (ma	ax)				

Worked Examples for 1-2(c)	For 1-2(c) - Deter Technical Specific	mining the cation / Nat	e Efficiency f meplates	or Air Distribution	Equipment from
	b. Total air vol	wer consur ume flow ra	ate = 409212 C	527 kW = 245527 W CMH 212 = 0.6 W/CMH	
	b. Total air vol	wer consur ume flow ra	nte = 678520 C	2 kW = 275200 W CMH 520 = 0.406 W/CMH	
	b. Total air vol	ume flow ra	ate = 979805 C	52 kW = 411520 W CMH 805 = 0.420 W/CMH	
	4. Overall required	air distribu	tion system ef	ficiency specified un	der CP 13:1999
	= <u>(0.74)(40921</u> (44	1 <u>2) + (0.47)</u> 09212 + 67	(678520) + (0. 8520 + 97980	$\frac{47)(97980}{5}$ = 0.52	23 W/CMH
	5. Overall required	air distribu	tion system ef	ficiency based on su 1520) / (409212 + 67	
	=	= 932247/2	2067537 W/CN	ЛН	
	=	= 0.451 W/0	СМН		
	T I I I I I I I	. =	(
	Table 1-2(c) : Equip			ibution System)	
	Table 1-2(c) : Equip		ency (Air-Distr n Specs Nameplate motor power (W)	ibution System) Allowable nameplate motor power CP 13 (W/CMH)	Power Required by the motor at design condition (W/CMH)
		From Total air flow	n Specs Nameplate motor	Allowable nameplate motor power CP 13	by the motor at design condition
	Equipment Type	From Total air flow (CMH)	n Specs Nameplate motor power (W)	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47	by the motor at design condition (W/CMH) 0.60 0.406
	Equipment Type	From Total air flow (CMH) 409212 678520 979805	n Specs Nameplate motor power (W) 245527 275200 411520	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47 0.47	by the motor at design condition (W/CMH) 0.60 0.406 0.420
	Equipment Type 1. AHUs (VAV) 2. AHUs (CAV)	From Total air flow (CMH) 409212 678520	n Specs Nameplate motor power (W) 245527 275200	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47	by the motor at design condition (W/CMH) 0.60 0.406
	Equipment Type 1. AHUs (VAV) 2. AHUs (CAV) 3. FCUs	From Total air flow (CMH) 409212 678520 979805	n Specs Nameplate motor power (W) 245527 275200 411520	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47 0.47 0.523	by the motor at design condition (W/CMH) 0.60 0.406 0.420
	Equipment Type 1. AHUs (VAV) 2. AHUs (CAV) 3. FCUs Total	From Total air flow (CMH) 409212 678520 979805 2067537	n Specs Nameplate motor power (W) 245527 275200 411520 932247 See working (4) a	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47 0.47 0.523	by the motor at design condition (W/CMH) 0.60 0.406 0.420 0.420 0.451
	Equipment Type 1. AHUs (VAV) 2. AHUs (CAV) 3. FCUs Total	From Total air flow (CMH) 409212 678520 979805 2067537	n Specs Nameplate motor power (W) 245527 275200 411520 932247 See working (4) a	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47 0.47 0.523 See worki	by the motor at design condition (W/CMH) 0.60 0.406 0.420 0.420 0.451
	Equipment Type 1. AHUs (VAV) 2. AHUs (CAV) 3. FCUs Total	From Total air flow (CMH) 409212 678520 979805 2067537	n Specs Nameplate motor power (W) 245527 275200 411520 932247 See working (4) a	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47 0.47 0.523 above See worki ton Equipment = (0.4 = 0.7	by the motor at design condition (W/CMH) 0.60 0.406 0.420 0.420 0.451
	Equipment Type 1. AHUs (VAV) 2. AHUs (CAV) 3. FCUs Total	From Total air flow (CMH) 409212 678520 979805 2067537 Efficiency fo	n Specs Nameplate motor power (W) 245527 275200 411520 932247 See working (4) a or Air Distributi	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47 0.47 0.523 above See worki ton Equipment = (0.4 = 0.7	by the motor at design condition (W/CMH) 0.60 0.406 0.420 0.451 0.451 523 -0.451) / 0.523 1377 x 100% 3.77%
	Equipment Type 1. AHUs (VAV) 2. AHUs (CAV) 3. FCUs Total	From Total air flow (CMH) 409212 678520 979805 2067537 Efficiency fo	n Specs Nameplate motor power (W) 245527 275200 411520 932247 See working (4) a or Air Distributi	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47 0.47 0.523 above See worki ion Equipment = (0.4 = 0.7 = 13	by the motor at design condition (W/CMH) 0.60 0.406 0.420 0.451 0.451 523 -0.451) / 0.523 1377 x 100% 3.77%
	Equipment Type 1. AHUs (VAV) 2. AHUs (CAV) 3. FCUs Total	From Total air flow (CMH) 409212 678520 979805 2067537	n Specs Nameplate motor power (W) 245527 275200 411520 932247 See working (4) a or Air Distributi	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47 0.47 0.523 above See worki ion Equipment = (0.4 = 0.7 = 13	by the motor at design condition (W/CMH) 0.60 0.406 0.420 0.451 0.451 523 -0.451) / 0.523 1377 x 100% 3.77%
	Equipment Type 1. AHUs (VAV) 2. AHUs (CAV) 3. FCUs Total	From Total air flow (CMH) 409212 678520 979805 2067537	n Specs Nameplate motor power (W) 245527 275200 411520 932247 See working (4) a or Air Distributi	Allowable nameplate motor power CP 13 (W/CMH) 0.74 0.47 0.47 0.523 above See worki ion Equipment = (0.4 = 0.7 = 13	by the motor at design condition (W/CMH) 0.60 0.406 0.420 0.451 0.451 523 -0.451) / 0.523 1377 x 100% 3.77%


Worked Examples For 1-2(d)	For 1-2(d) plant effic		uncertainty in the resulting chilled-water
For 1-2(d) Computation of overall uncertainty in the resulting chilled-water plant efficiency	technical necessary measurem shall be uncertainty the sensor wiring con	specifications are based or to allow for on-site de nent system comprising the capable of calculating resu y within ±5% for on-site me r, any signal conditioning (if a	ertainties stated in calibration certificates and n controlled conditions in a laboratory, it is eviations and measurements. The overal temperature, flow and power measurement iltant chiller-water plant efficiency with the asurement. Each measurement shall include available), the data acquisition system and the g example illustrates the computation of the t system installed.
	Item	Measurement System	End-to-End Measurement Uncertainty (% of reading)
	1	Temperature	$\frac{\sqrt{0.05^2 + 0.05^2}}{5.5} = 1.3 \%^{\text{see note (1)}}$
	2	Flow	1% ^{see note (2)} + 1% (i.e. 2%)
	3	Power	1% see note (3)
	uncertainty uncertainty assumed to (2) An add flow meter (3) Uncert transforme be specifie The overa individual information	y of \pm 0.05°C over the e y for ΔT is computed base to be 5.5 °C as illustrated ab ditional 1% to be included in tainty of power measureme er where applicable. It is reco ed to ensure accuracy. Il uncertainty of the measure uncertainty of each mea	m shall have an end-to-end measurement entire measurement range. The combined of on the root-sum square formula with ΔT ove. In the computation of measurement errors for ent system shall include that of the current permended that 3^{rd} party verified power mete example that 3^{rd} party verified power mete

	Chilled water supply ⁽²⁾ temperature	Chilled water return (q	Chilled water flow rate \hat{o}	ater (p) rature (p	ter return (a)	(f) ter flow	(g)	(h)	(i)	(j) Jauce	
	Chille tempe	Chilled wate temperature	Chilled wat	Condenser water supply temperature	Condenser water return temperature	Condenser water flow rate	Chiller kWe	Heat Gain	Heat Rejected	Percent Heat Balance	
dd/mm/yyyy hh:mm	°C	°C	L/s	°	°	L/s	kW	RT	RT	%	
16/6/2012 15:00	6.70	12.60	84.10	29.4	35.5	97.65	308	591.14	709.65	-4.36	
16/6/2012 15:01	6.71	12.50	84.20	29.5	35.4	97.60	309	580.81	686.03	-2.53	
16/6/2012 15:02	6.72	12.30	84.30	29.6	35.3	97.55	310	560.41	662.44	-2.10	
16/6/2012 15:03	6.73	12.10	84.20	29.7	35.2	97.50	311	538.68	638.86	-1.84	
16/6/2012 15:04	6.74	12.20	84.10	29.8	35.1	97.55	312	547.05	615.95	3.22	
16/6/2012 15:05	6.75	12.00	84.00	29.9	35	97.60	311	525.39	593.01	3.51	
16/6/2012 15:06	6.74	12.30	84.10	29.8	35.1	97.65	310	557.07	616.58	4.64	
16/6/2012 15:07	6.73	12.10	84.20	29.7	35.2	97.60	309	538.68	639.52	-2.03	
16/6/2012 15:08	6.72	12.10	84.30	29.6	35.3	97.55	308	540.32	662.44	-5.21	
16/6/2012 15:09	6.71	12.20	84.20	29.5	35.4	97.50	309	550.71	685.33	-6.82	
16/6/2012 15:10	6.70	12.40	84.10	29.4	35.2	97.55	310	571.10	674.06	-2.20	
16/6/2012 15:11	6.70	12.60	84.10	29.4	35.5	97.65	308	591.14	709.65	-4.36	
16/6/2012 15:12	6.71	12.50	84.20	29.5	35.4	97.60	309	580.81	686.03	-2.53	
16/6/2012 15:13	6.72	12.30	84.30	29.6	35.3	97.55	310	560.41	662.44	-2.10	
16/6/2012 15:14	6.73	12.10	84.20	29.7	35.2	97.50	311	538.68	638.86	-1.84	
										3.22	
										3.51	
										4.64	
										-2.03	
										-5.21	
										-6.82	
										-2.20	
										32.36	
		l						-		22	
								Data Count	>+5% error	0	
								Data Count	t < -5% error	4	
						Percent	age of h	eat balance	within ± 5%	82%	
Heat Rejected	d (i) =	= (f) ×	4.19	kJ/kg	⁰C x [(e) – (d)] / 3	5.517			
	16/6/2012 15:03 16/6/2012 15:04 16/6/2012 15:05 16/6/2012 15:05 16/6/2012 15:07 16/6/2012 15:09 16/6/2012 15:09 16/6/2012 15:10 16/6/2012 15:11 16/6/2012 15:12 16/6/2012 15:13 16/6/2012 15:15 16/6/2012 15:15 16/6/2012 15:18 16/6/2012 15:20 16/6/2012 15:20 16/6/2	16/6/2012 15:03 6.73 $16/6/2012 15:04$ 6.74 $16/6/2012 15:05$ 6.75 $16/6/2012 15:05$ 6.73 $16/6/2012 15:06$ 6.74 $16/6/2012 15:07$ 6.73 $16/6/2012 15:07$ 6.73 $16/6/2012 15:09$ 6.71 $16/6/2012 15:09$ 6.71 $16/6/2012 15:10$ 6.70 $16/6/2012 15:10$ 6.70 $16/6/2012 15:12$ 6.71 $16/6/2012 15:13$ 6.72 $16/6/2012 15:14$ 6.73 $16/6/2012 15:15$ 6.74 $16/6/2012 15:16$ 6.75 $16/6/2012 15:17$ 6.74 $16/6/2012 15:19$ 6.72 $16/6/2012 15:19$ 6.72 $16/6/2012 15:20$ 6.71 $16/6/2012 15:20$ 6.71 $16/6/2012 15:21$ 6.70 Total Image: Colored transmitted tr	16/6/2012 15:03 6.73 12.10 $16/6/2012 15:04$ 6.74 12.20 $16/6/2012 15:05$ 6.75 12.00 $16/6/2012 15:06$ 6.74 12.30 $16/6/2012 15:06$ 6.74 12.30 $16/6/2012 15:07$ 6.73 12.10 $16/6/2012 15:08$ 6.72 12.10 $16/6/2012 15:09$ 6.71 12.20 $16/6/2012 15:10$ 6.70 12.40 $16/6/2012 15:10$ 6.70 12.40 $16/6/2012 15:10$ 6.71 12.50 $16/6/2012 15:12$ 6.71 12.50 $16/6/2012 15:13$ 6.72 12.30 $16/6/2012 15:14$ 6.73 12.10 $16/6/2012 15:15$ 6.74 12.30 $16/6/2012 15:16$ 6.75 12.00 $16/6/2012 15:19$ 6.72 12.10 $16/6/2012 15:20$ 6.71 12.20 $16/6/2012 15:21$ 6.70 12.40 Total	16/6/2012 15:036.7312.1084.2016/6/2012 15:046.7412.2084.1016/6/2012 15:056.7512.0084.0016/6/2012 15:066.7412.3084.1016/6/2012 15:076.7312.1084.2016/6/2012 15:086.7212.1084.3016/6/2012 15:096.7112.2084.2016/6/2012 15:096.7112.2084.2016/6/2012 15:106.7012.4084.1016/6/2012 15:116.7012.6084.1016/6/2012 15:126.7112.5084.2016/6/2012 15:136.7212.3084.3016/6/2012 15:146.7312.1084.2016/6/2012 15:156.7412.2084.1016/6/2012 15:166.7512.0084.0016/6/2012 15:176.7412.3084.1016/6/2012 15:166.7512.0084.0016/6/2012 15:176.7112.2084.2016/6/2012 15:196.7212.1084.2016/6/2012 15:206.7112.2084.2016/6/2012 15:216.7012.4084.10TotalHeat Gain (h) = m x Cp x ΔTHeat Rejected (i) = (f) x 4.19	16/6/2012 15:036.7312.1084.2029.716/6/2012 15:046.7412.2084.1029.816/6/2012 15:056.7512.0084.0029.916/6/2012 15:066.7412.3084.1029.816/6/2012 15:076.7312.1084.2029.716/6/2012 15:086.7212.1084.3029.616/6/2012 15:096.7112.2084.2029.516/6/2012 15:106.7012.4084.1029.416/6/2012 15:116.7012.6084.1029.416/6/2012 15:126.7112.5084.2029.516/6/2012 15:136.7212.3084.3029.616/6/2012 15:146.7312.1084.2029.716/6/2012 15:156.7412.2084.1029.816/6/2012 15:166.7512.0084.0029.916/6/2012 15:166.7512.0084.0029.916/6/2012 15:166.7312.1084.2029.716/6/2012 15:176.7412.3084.1029.816/6/2012 15:196.7212.1084.3029.616/6/2012 15:206.7112.2084.2029.716/6/2012 15:216.7012.4084.1029.416/6/2012 15:216.7012.4084.1029.416/6/2012 15:216.7112.2084.2029.516/6/2012 15:216.7112.4084.1029.4Heat Gain (h) =	16/6/2012 15:036.7312.1084.2029.735.216/6/2012 15:046.7412.2084.1029.835.116/6/2012 15:056.7512.0084.0029.93516/6/2012 15:066.7412.3084.1029.835.116/6/2012 15:076.7312.1084.2029.735.216/6/2012 15:086.7212.1084.3029.635.316/6/2012 15:096.7112.2084.2029.535.416/6/2012 15:106.7012.4084.1029.435.216/6/2012 15:116.7012.6084.1029.435.516/6/2012 15:126.7112.5084.2029.535.416/6/2012 15:136.7212.3084.3029.635.316/6/2012 15:136.7212.3084.3029.635.316/6/2012 15:146.7312.1084.2029.735.216/6/2012 15:156.7412.2084.1029.835.116/6/2012 15:166.7512.0084.0029.93516/6/2012 15:176.7412.3084.1029.435.216/6/2012 15:196.7112.2084.2029.735.216/6/2012 15:196.7112.2084.1029.435.216/6/2012 15:206.7112.2084.2029.535.416/6/2012 15:216.7012.4084.1029.435.2Total <td colspa<="" td=""><td>16/6/2012 15:03 6.73 12.10 84.20 29.7 35.2 97.50 16/6/2012 15:04 6.74 12.20 84.10 29.8 35.1 97.55 16/6/2012 15:05 6.75 12.00 84.00 29.9 35 97.60 16/6/2012 15:06 6.74 12.30 84.10 29.8 35.1 97.65 16/6/2012 15:07 6.73 12.10 84.20 29.7 35.2 97.60 16/6/2012 15:08 6.72 12.10 84.30 29.6 35.3 97.55 16/6/2012 15:09 6.71 12.20 84.20 29.5 35.4 97.50 16/6/2012 15:10 6.70 12.40 84.10 29.4 35.5 97.65 16/6/2012 15:11 6.70 12.60 84.10 29.4 35.5 97.55 16/6/2012 15:13 6.72 12.30 84.30 29.6 35.3 97.55 16/6/2012 15:14 6.73 12.10 84.20 29.7 35.2 97.60 16/6/2012 15:15 6.74 12.20 84.10 29.8</td><td>16/6/2012 15:03 6.73 12.10 84.20 29.7 35.2 97.50 311 16/6/2012 15:04 6.74 12.20 84.10 29.8 35.1 97.55 312 16/6/2012 15:05 6.75 12.00 84.00 29.9 35 97.60 311 16/6/2012 15:06 6.74 12.30 84.10 29.8 35.1 97.65 310 16/6/2012 15:06 6.72 12.10 84.20 29.7 35.2 97.60 309 16/6/2012 15:08 6.72 12.10 84.20 29.5 35.4 97.55 308 16/6/2012 15:09 6.71 12.20 84.20 29.5 35.4 97.50 309 16/6/2012 15:10 6.70 12.40 84.10 29.4 35.5 97.65 308 16/6/2012 15:11 6.70 12.60 84.10 29.4 35.5 97.60 309 16/6/2012 15:13 6.72 12.30 84.20 29.7 35.2 97.60 311 16/6/2012 15:13 6.74 12.20 84.10 29.</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td>	<td>16/6/2012 15:03 6.73 12.10 84.20 29.7 35.2 97.50 16/6/2012 15:04 6.74 12.20 84.10 29.8 35.1 97.55 16/6/2012 15:05 6.75 12.00 84.00 29.9 35 97.60 16/6/2012 15:06 6.74 12.30 84.10 29.8 35.1 97.65 16/6/2012 15:07 6.73 12.10 84.20 29.7 35.2 97.60 16/6/2012 15:08 6.72 12.10 84.30 29.6 35.3 97.55 16/6/2012 15:09 6.71 12.20 84.20 29.5 35.4 97.50 16/6/2012 15:10 6.70 12.40 84.10 29.4 35.5 97.65 16/6/2012 15:11 6.70 12.60 84.10 29.4 35.5 97.55 16/6/2012 15:13 6.72 12.30 84.30 29.6 35.3 97.55 16/6/2012 15:14 6.73 12.10 84.20 29.7 35.2 97.60 16/6/2012 15:15 6.74 12.20 84.10 29.8</td> <td>16/6/2012 15:03 6.73 12.10 84.20 29.7 35.2 97.50 311 16/6/2012 15:04 6.74 12.20 84.10 29.8 35.1 97.55 312 16/6/2012 15:05 6.75 12.00 84.00 29.9 35 97.60 311 16/6/2012 15:06 6.74 12.30 84.10 29.8 35.1 97.65 310 16/6/2012 15:06 6.72 12.10 84.20 29.7 35.2 97.60 309 16/6/2012 15:08 6.72 12.10 84.20 29.5 35.4 97.55 308 16/6/2012 15:09 6.71 12.20 84.20 29.5 35.4 97.50 309 16/6/2012 15:10 6.70 12.40 84.10 29.4 35.5 97.65 308 16/6/2012 15:11 6.70 12.60 84.10 29.4 35.5 97.60 309 16/6/2012 15:13 6.72 12.30 84.20 29.7 35.2 97.60 311 16/6/2012 15:13 6.74 12.20 84.10 29.</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	16/6/2012 15:03 6.73 12.10 84.20 29.7 35.2 97.50 16/6/2012 15:04 6.74 12.20 84.10 29.8 35.1 97.55 16/6/2012 15:05 6.75 12.00 84.00 29.9 35 97.60 16/6/2012 15:06 6.74 12.30 84.10 29.8 35.1 97.65 16/6/2012 15:07 6.73 12.10 84.20 29.7 35.2 97.60 16/6/2012 15:08 6.72 12.10 84.30 29.6 35.3 97.55 16/6/2012 15:09 6.71 12.20 84.20 29.5 35.4 97.50 16/6/2012 15:10 6.70 12.40 84.10 29.4 35.5 97.65 16/6/2012 15:11 6.70 12.60 84.10 29.4 35.5 97.55 16/6/2012 15:13 6.72 12.30 84.30 29.6 35.3 97.55 16/6/2012 15:14 6.73 12.10 84.20 29.7 35.2 97.60 16/6/2012 15:15 6.74 12.20 84.10 29.8	16/6/2012 15:03 6.73 12.10 84.20 29.7 35.2 97.50 311 16/6/2012 15:04 6.74 12.20 84.10 29.8 35.1 97.55 312 16/6/2012 15:05 6.75 12.00 84.00 29.9 35 97.60 311 16/6/2012 15:06 6.74 12.30 84.10 29.8 35.1 97.65 310 16/6/2012 15:06 6.72 12.10 84.20 29.7 35.2 97.60 309 16/6/2012 15:08 6.72 12.10 84.20 29.5 35.4 97.55 308 16/6/2012 15:09 6.71 12.20 84.20 29.5 35.4 97.50 309 16/6/2012 15:10 6.70 12.40 84.10 29.4 35.5 97.65 308 16/6/2012 15:11 6.70 12.60 84.10 29.4 35.5 97.60 309 16/6/2012 15:13 6.72 12.30 84.20 29.7 35.2 97.60 311 16/6/2012 15:13 6.74 12.20 84.10 29.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Worked Example 1-2(e)

Continued

Abbreviations used in Worked Example 1-2(e)

CT	Cooling Tower	-
CHWS	Chilled Water Supply Temperature	٥C
CHWR	Chilled Water Return Temperature	٥C
CWS	Condenser Water Supply Temperature	٥C
CWR	Condenser Water Return Temperature	٥C
KW	Electrical Power Consumption	kW
Qevaporator	Cooling Load	kW or RT
q _{condenser}	Heat Rejection	kW or RT
Winput	Energy Input	kW
AHU	Air Handling Unit	
BP	Bypass Line	
BPV	Bypass Valve (2-Way Modulating)	
Ср	Specific Heat Capacity of Water	4.19 kJ/kg.⁰C

ENRB 1-3 NATURAL VENTILATION / MECHANICAL VENTILATION

Objectives	Encourage building that facilitates good natural ventilation or with provision for ventilation by efficient mechanical ventilation system.
Applicability	Applicable to non air-conditioned building spaces with aggregate areas > 10% of the total floor areas <u>excluding carparks</u> , <u>plant rooms and common areas</u> . <u>Important notes</u> : Where there is a combination of naturally ventilated and mechanical ventilated spaces, the points scored will only be based on the predominant ventilation modes of normally occupied spaces.
Baseline Standard	 <u>1-3(a) Natural Ventilation</u> Natural ventilation with window openings facing North and South directions and building design that utilizes prevailing wind conditions to achieve adequate cross ventilation. <u>1-3(b) Mechanical Ventilation</u> Reference to fan system design criteria in CP 13: 1999 – Code of Practice for Mechanical Ventilation and Air-conditioning in buildings.
	Fan motor shall not exceedConstant volumeVariable volume0.47 W/cmh0.74 W/cmh
Requirements	 <u>1-3(a) Natural Ventilation</u> Up to 32 points can be scored under natural ventilation. 20 points can be scored for the use of natural ventilation. Additional 1.6 points can be scored for every 10% of NV areas with window openings facing north and south directions and cross ventilation. Points scored = 1.6 x (% of NV areas / 10) Note: In Singapore, the prevailing wind comes from two predominant directions; that is the north to North-East during the Northeast monsoon season and South to South-East during the South-West monsoon season. Hence, buildings with window openings facing the North and South directions have the advantage of the prevailing wind conditions which would enhance indoor thermal comfort. It is not necessary for the window openings to be located perpendicularly to the prevailing wind direction. An oblique angle is considered acceptable (see illustrations below).

Documentary Evidences	Illustra directi 1-3(b) • Uj • 0. For 1- • A • C • C • E For 1- • A • C • C • C • C • C • C • C • C • C • C • C • C • C • C • A • A • A	ation - Building layout shows ons. <u>Mechanical Ventilation</u> to 32 points can be scored for <u>6 points can be scored for</u> <u>-3(a) Natural Ventilation</u> rchitectural plan layouts spenings in the N-S directing alculation showing the pend south directions in the xample 1-3(a)(i). <u>-3(b) Mechanical Ventilate</u> Architectural plan layouts are mechanically ventilate Architectural plan layouts are mechanical ventilated Architectural plan layouts are mechanical ventilated Architec	red for the use of <u>r every subseque</u> showing the room on and/or with ai ercentage of room e prescribed tabu tion showing the mod	energy efficier ent 1% improve s with highlights r-conditioned s as with window lated format as e of ventilation	nt MV system. ement from baseline. s of those with window ystems; openings facing north s shown in the worked
References	CP 1: Buildi	3: 1999 – Code of Practi ngs.	ce for Mechanica	al Ventilation a	and Air-conditioning in
Worked Example 1-3(a)(i)	An ins of the classi	ground information for Na stitutional building compris e window openings facing room Block C with windo , meeting rooms and com Description	ses two 3-storey og g the N-S direction w opening in the	classroom block on and cross v e E-W direction	ventilation, a 4 storey n and three blocks of

1	Classroom Blk A & B	40	60	
2	Classroom Blk C	0	40	Σ (a)/ Σ (b) x100%
3	Offices, meeting rooms and computer rooms with air-conditioning	NA	NA	
	Total :	40	100	
facing	s scored for window open g N-S directions points scored for Natural	= $1.6 \times [(\Sigma ($ = $1.6 \times [(40/$ = $6.4 \text{ points})$	a)/ ∑ (b) x1009 100 x 100%) /	10]

Worked	Backgrour	nd informat	ion for Mech	anical Ventilatio	on example	
					s of 4-storey bloo	ck with 6 worksh
1-3(a)(i)	MV fan scl		nanically ven	tilated.		
	Workshop	Fan	Fan Type	Air Flow Rate (CMH)	Fan Input Power (kW)	Fan Efficiency (W/CMH)
	1	FAF 1-1		39000	8.28	0.21
	2	FAF 1-2		39000	8.28	0.21
	3	FAF 1-3	-	39000	8.28	0.21
	4	FAF 2-1	-	24000	3.92	0.16
	5	FAF 2-2		24000	3.92	0.16
	6	FAF 2-3		24000	3.92	0.16
	1	EAF 1-1	- Axial	39000	8.28	0.21
	2	EAF 1-2		39000	8.28	0.21
	3	EAF 1-3		39000	8.28	0.21
	4	EAF 2-1		24000	3.92	0.16
	5	EAF 2-2		24000	3.92	0.16
	6	EAF 2-3		24000	3.92	0.16
			TOTAL	378,000	73.24	
	Total air flo	ow rate =	⁻ = <u>73.24 kW</u> <u>378,000 CM</u> ower = 378.0		∕ W/CMH	
	Dacomito.	rotar lari p	= 177.0			
	Dointo coo	rad = 0.6	x (% improve			
	Points Sco			,		
		= 0.6	x [(177.66 –	73.24)/177.66 >	k 100	
		= 0.6	x 58.8			
		= 35 p	points > 32 (r	max)		
	Therefore,	point scor	ed should be	e 32 points.		

ENRB 1-4 ARTIFICIAL LIGHTING

Objectives	Encourage the use of better efficient lighting to minimize energy consumption from lighting usage while maintaining proper lighting level.
Applicability	Applicable to lighting provisions for the type of usage specified in the CP 24:1999 Clause 7 – Lighting power budget.
Baseline Standard	Maximum lighting power budget stated in Annex 1 of the GM ENRB Version 3.
Requirements	 Up to 13 points if includes tenants' lighting provision OR up to 5 points if tenants' lighting provision is excluded for the improvement in the lighting power consumption. 0.3 point for every percentage improvement in the lighting provisions over the baseline standard. That is Points scored = 0.3 x (% improvement) Display and specialized lightings are to be included in the calculation of lighting power budget. For hotels and offices, task lightings are to be included in the lighting power budget computation.
Documentary Evidences	 Lighting layout plan; Calculation of the lighting power budget showing individual locations with area in m², fittings type, power consumption in watt, ballast loss, no. of lamps, total power consumption in watt, power density watt/m², reference power density watt/m², reference total power consumption and the percentage improvement in the prescribed tabulated format as shown in the worked example 1-4; Technical product information of the lighting luminaries used.
References	 CP 24: 1999 – Code of Practice for Energy Efficiency Standard for Building Services and Equipment. SS 531: Part 1: 2006 – Code of Practice for Lighting of Work Places – Indoor Annex 1 of Green Mark for Existing Non-Residential Buildings (Version 3.0) : Maximum lighting power budget (including ballast loss)
Worked Example 1-4	 Determine the total power consumption based on the lighting layout design for each area and light fitting types used. Calculate the total power consumption based on the maximum lighting power budget stated in the References. Calculate the percentage improvement in the total power consumption.

Description	Areas (m²)	Light Fitting Type	Power Consumption per fitting (W)	Ballast Loss (W)	No. of Fittings	Total powe consumptio based on fitting type
	(A)	(B)	(C)	(D)	(E)	[(C+D) x (E
Office Type 1	1500	T5	28	3	490	15190
Office Type 2	1250	T5	28	3	420	13020
Meeting Room	75	Т8	36	6	15	630
		Surface downlight	26	3	16	464
Corridors Type 1	150	T5	28	3	40	1240
Corridors Type 2	205	T5	28	3	40	1240
		Surface downlight	70	3	10	730
Atrium	850	Т8	28	6	174	5916
		Surface downlight	150	3	10	1530
Carparks	7500	T5	28	3	870	26970
Staircase	300	T5	28	3	40	1240
Male toilets	45	PLC	13	3	15	240
Female toilets	45	PLC	13	3	15	240
Table 1-4-2 : Tot	<u> </u>	consumptio			Total	
Table 1-4-2 : Tot	<u> </u>	-		ign and §	Total SS 530 req	68650 uirements
	al power	-	n based on des sign Data r Design n Lighting Pow	ign and s	Total	68650 uirements
	al power Areas	De Total Power Consumptio	n based on des sign Data r Design	ign and S S Per Lighti P	Total SS 530 req S 530 Requ erence	68650 uirements uirements Reference Total Power Consumption
	al power Areas (m²)	De Total Power Consumptio (by area)(W	n based on des sign Data r Design n Lighting Pow Budget (W/m	ign and S S Per Lighti P	Total SS 530 req S 530 Req erence ng Power et (W/m ²)	68650 uirements uirements Reference Total Power Consumption (by area) (W)
Description	al power Areas (m²) (A)	De Total Power Consumptio (by area)(W (F)	n based on des sign Data r Design Lighting Pow Budget (W/m (F/A)	ign and S S Per Lighti P	Total SS 530 req S 530 Req erence ng Power et (W/m ²) (H)	68650 uirements uirements Reference Total Power Consumption (by area) (W) (H x A)
Description Office Type 1	al power Areas (m ²) (A) 1500	De Total Power Consumptio (by area)(W (F) 15190	n based on des sign Data r Design Lighting Pow Budget (W/m (F/A) 10.13	ign and S S Per Lighti P	Total SS 530 req S 530 Req erence ng Power et (W/m ²) (H) 15	68650 uirements uirements Reference Total Power Consumption (by area) (W) (H x A) 22,500
Description Office Type 1 Office Type 2	al power Areas (m ²) (A) 1500 1250	De Total Power Consumptio (by area)(W (F) 15190 13020	n based on des sign Data r Design Lighting Pow Budget (W/m (F/A) 10.13 10.42	ign and S S Per Lighti P	Total SS 530 req S 530 Requerence ng Power et (W/m ²) (H) 15	68650 uirements uirements Reference Total Power Consumption (by area) (W) (H x A) 22,500 18,750
Description Office Type 1 Office Type 2 Meeting Room	al power Areas (m ²) (A) 1500 1250 75	De Total Power Consumptio (by area)(W (F) 15190 13020 1094	n based on des sign Data r Design Lighting Pow Budget (W/m (F/A) 10.13 10.42 14.59	ign and S S Per Lighti P	Total SS 530 req S 530 Requ erence ng Power et (W/m ²) (H) 15 15 15	68650 uirements uirements Reference Total Power Consumption (by area) (W) (H x A) 22,500 18,750 1,125
Description Office Type 1 Office Type 2 Meeting Room Corridors Type 1	al power Areas (m ²) (A) 1500 1250 75 150	De Total Power Consumptio (by area)(W (F) 15190 13020 1094 1240	n based on des sign Data r Design Lighting Pow Budget (W/m (F/A) 10.13 10.42 14.59 8.27	ign and S S Per Lighti P	Total SS 530 req S 530 Req erence ng Power et (W/m ²) (H) 15 15 15 10	68650 uirements uirements Reference Total Power Consumption (by area) (W) (H x A) 22,500 18,750 1,125 1,500
Description Office Type 1 Office Type 2 Meeting Room Corridors Type 1 Corridors Type 2	al power Areas (m ²) (A) 1500 1250 75 150 205	De Total Power Consumptio (by area)(W (F) 15190 13020 1094 1240 1970	n based on des sign Data r Design Lighting Pow Budget (W/m (F/A) 10.13 10.42 14.59 8.27 9.61	ign and S S Per Lighti P	Total SS 530 req S 530 Req erence ng Power et (W/m ²) (H) 15 15 15 10 10 10	68650 uirements uirements Reference Total Power Consumption (by area) (W) (H x A) 22,500 18,750 1,125 1,500 2,050
Description Office Type 1 Office Type 2 Meeting Room Corridors Type 1 Corridors Type 2 Atrium	al power Areas (m ²) (A) 1500 1250 75 150 205 850	De Total Power Consumptio (by area)(W (F) 15190 13020 1094 1240 1970 7446	n based on des sign Data r Design Lighting Pow Budget (W/m (F/A) 10.13 10.42 14.59 8.27 9.61 8.76	ign and S S Per Lighti P	Total SS 530 req S 530 Req erence ng Power et (W/m ²) (H) 15 15 15 10 10 10 10	68650 uirements uirements Reference Total Power Consumption (by area) (W) (H x A) 22,500 18,750 1,125 1,500 2,050 8,500
Description Office Type 1 Office Type 2 Meeting Room Corridors Type 1 Corridors Type 2 Atrium Carparks	al power Areas (m ²) (A) 1500 1250 75 150 205 850 7500	De Total Power Consumptio (by area)(W (F) 15190 13020 1094 1240 1970 7446 26970	n based on des sign Data r Design Lighting Pow Budget (W/m (F/A) 10.13 10.42 14.59 8.27 9.61 8.76 3.60	sign and S S Per Lighti P P Sudg	Total SS 530 req S 530 Req erence ng Power et (W/m ²) (H) 15 15 15 10 10 10 10 5	68650 uirements uirements Reference Total Power Consumption (by area) (W) (H x A) 22,500 18,750 1,125 1,500 2,050 8,500 37,500
Description Office Type 1 Office Type 2 Meeting Room Corridors Type 1 Corridors Type 2 Atrium Carparks Staircase	al power Areas (m ²) (A) 1500 1250 75 150 205 850 7500 300	De Total Power Consumptio (by area)(W (F) 15190 13020 1094 1240 1970 7446 26970 1240	n based on des sign Data r Design Lighting Pow Budget (W/m (F/A) 10.13 10.42 14.59 8.27 9.61 8.76 3.60 4.13	sign and S S Per Lighti P Budg	Total SS 530 req S 530 Req erence ng Power et (W/m ²) (H) 15 15 15 10 10 10 10 5 6	68650 uirements uirements Reference Total Power Consumption (by area) (W) (H x A) 22,500 18,750 1,125 1,500 2,050 8,500 37,500 1,800

Worked Example 1-4 Continued	% improvement in the lighting power consumption = $[\Sigma (HxA) - \Sigma (F)] / \Sigma (HxA) \times 100\%$ = (94205-68650)/94205 x 100% = 27.13%
	Points scored = $0.3 \times 27.13 = 8.14$ points
	Therefore, points scored should be 8.1 points if tenant's lighting is included ;
	and points scored should be 5 points (max) if tenant's lighting is excluded.
	67

ENRB 1-5 VENTILATION IN CARPARKS

Objectives	Encourage the use of energy efficient design and control of ventilation systems in carparks.
Applicability	Applicable to all carpark spaces in the development.
Baseline Standard	Nil
Requirements Documentary Evidences	 <u>1-5(a)</u> 4 points can be scored if the carparks spaces are fully naturally ventilated. <u>1-5(b)</u> Up to 4 points can be scored for carparks that are mechanically ventilated. Points can only be scored for the use of carbon monoxide (CO) sensors in regulating the demand for the mechanical ventilation (MV) used; 2.5 points for carparks using fume extract system and 2 points for those with MV with or without supply. Note: Where there is a combination of different ventilation mode adopted for carpark design, the points scored under this requirement will be prorated accordingly. For 1-5(a) and (b) Plan layouts showing all carpark provisions with highlights of the carpark spaces that are designed to be naturally ventilated and/or mechanical ventilated; Plan layouts indicating the locations of CO sensors and the mode of ventilation adopted for the design; and Calculation showing the points allocation if there is a combination of different ventilation modes adopted for the carpark design.
References	CP 13:1999 – Code of Practice for Air-Conditioning and Mechanical Ventilation in Buildings.
Worked Example 1-5	A building has a 6-storey naturally ventilated carparks and one level of mechanically ventilated basement carparks with CO sensors installed to regulate MV.Areas of naturally ventilated carparks= $6 \times 600 = 3600 \text{ m}^2$ Areas of basement carparks= 600 m^2 Total areas= 4200 m^2 Points scored for ENRB 1-5= $(3600/4200) \times 4 + (600/4200) \times 2$ = $3.71 \text{ points (max)}$

ENRB 1-6 VENTILATION IN COMMON AREAS

Objectives	Encourage the use of energy efficient ventilation systems in common areas.
Applicability	Applicable to the following common areas:- Toilets Staircases Corridors
Baseline Standard	Nil
Requirements	 Up to 5 points can be scored for the use of natural ventilation as an effective passive cooling design strategy to reduce the energy used by air-conditioning systems in these common areas. Extent of coverage: At least 90% of each applicable area (by numbers). Points are scored based on the mode of ventilation provided in these applicable areas. Natural ventilation – 1.5 points for each common area Mechanical ventilation – 0.5 point for each common area
Documentary Evidences	 Plan layouts showing the applicable areas and the respective modes of ventilation; and Schedules showing the numbers, locations of the applicable areas and the modes of ventilation used.
References	CP 13:1999 – Code of Practice for Air-Conditioning and Mechanical Ventilation in Buildings.
Worked Example 1-6	 An existing building has the following details : No. of toilets = 45 ; where 10 units are mechanical ventilated and 35 units are natural ventilated. % of toilet units with natural ventilation = (35)/45 = 77.8 % < 90% and hence only 0.5 points shall be awarded for this item No. of staircases = 100 ; all are mechanical ventilated. Points scored is 0.5 point No. of lift lobbies = 22 ; all are naturally ventilated. Points scored is 1.5 points Total points scored for ENRB 1-6 = 0.5 + 0.5 + 1.5 = 2.5 points < 5 points(max)

ENRB 1-7 LIFTS AND ESCALATORS

Objectives	Encourage the use of energy efficient lifts and escalators.
Applicability	Applicable to all lifts and escalators in the building.
Baseline Standard	Nil.
Requirements	 1 point can be scored for the use of lifts with energy efficient features such as AC variable voltage and variable frequency (VVVF) motor drive or equivalent, and sleep mode features. 1 point can be scored for the use of escalators with motion sensors to regulate usage.
Documentary Evidences	 Technical specification indicating the types of lifts, escalators and related features used; and
References	-
Worked Example 1-7	 An existing building has the following provision : Two lift types : (a) Type L1 with VVVF motor drive and sleep mode features (ii) Type L2 with VVVF motor drive and sleep mode features Two escalator types : (a) Type E1 with VVVF motor drive and motion sensors (ii) Type E2 without VVVF motor drive and motion sensors 1 points for the use of lifts with VVVF and sleep mode features. No point for escalators as not all escalators are designed with motion sensors. Points scored for ENRB 1-7 = 1 point

ENRB 1-8 ENERGY EFFICIENT PRACTICES & FEATURES

Objectives	Encourage the use of energy efficient practices and features which are innovative and have positive environmental impact in terms of energy saving.
Applicability	Applicable to practices and features that are not listed in the requirements under Part 1 – Energy Efficiency.
Baseline Standard	-
Requirements	1-8 (a) • 1 point can be scored for the computation of using Energy Efficiency Index (EEI) as a building performance indicator to measure the building's unit area energy consumption for monitoring and improvements. <u>Calculation of EEI :</u> EEI = [(TBEC - DCEC) / (GFA - DCA)] × (NF/OH) where: (a) TBEC : Total building energy consumption (kWh/year) (b) DCEC : Data centre energy consumption (kWh/year) (c) GFA : Gross floor area (exclude car park area) (m ²) (d) DCA : Data centre area (m ²) (e) NF : Normalising factor based on a typical weekly operating hours that is <u>55 hrs/week</u> (g) OH : Weighted weekly operating hours (hrs/week) Note : (1) EEI is based on 100% occupancy rate for consistency. (2) All major energy consumption equipments are to be included in the estimation of total building energy consumption. (3) For industrial buildings, process load should be excluded. 1-8(b) • Up to 2 points can be scored for the use of energy efficiency products that are certified by approved local certification body. 0.5 point for each energy efficient features depending on the potential energy saving. 2 points for every 1% energy saving over total building energy consumption. • Re-generative lift • Heat recovery devices • Light shelves • Sun pipes for natural lighting • Photo sensors • Sun pipes advoe, it is required to submit the detalis showing t

Documentary	For 1-8(a)			
Evidences	Calculation of the	e Energy Efficiency Index (EEI) in t worked example 1-8(a).	he prescribed tabulated format	
	Twelve(12) mont	ths energy bills		
	For 1-8(b)			
	Certification from	n approved local certification body		
	Technical produc	t information.		
	For 1-8(c)			
	Write-up and dr.	awings showing the provision of extent of implementation where a		
	Technical produc	ct information on the energy efficie	nt features used; and	
	Calculation of th these features.	e potential energy savings that co	uld be reaped from the use of	
References		n Building Council (SGBC) s : <u>http://www.sgbc.sg/index.php/c</u>	ertification/assess/C109/	
	Singapore Enviro	onmental Council at <u>http://www.gre</u>	eenlabel.sg/sgls	
Worked Example 1-8(a)	 For 1-8(a) Tabulate the total annual building electricity consumption (TBEC) based on 12 months energy bills. 			
1-0(a)	Compute the End	ergy Efficiency Index of the buildin	g .	
	Background info :			
	Assume an existing building with GFA of 21,835 m ² , operatiing hours per week is 60 hours at 100% occupancy rate. No data centre in the building.			
	Month	Total Electricity Bill		
	Mar-11	756,730		
	Apr-11	819,278		
	May-11	819,538		
	Jun-11	742,540		
	Jul-11	806,854		
	Aug-11	847,571	_	
	Sep-11	865,244	_	
	Oct-11	834,212	-	
	Nov-11	872,959		
	Dec-11 Jan-12	847,652 935,965	-	
	Feb-12	767,112	-	
	TOTAL (kWH/yr)	9,915,655		
	EEI = [(TB	EC – DCEC) / (GFA – DCA)] x (NF	= / OH)	
	= [(9,9	915,655 – 0) / (21,836 – 0)] x (55 /	60)	

	= (9,915,655 / 21,836) x 0.917			
	= 454.12 x 0.917 $=$ 416.41 kWh/m ² /yr			
	Deinte second for ENDD 4.9(a) 4 point			
	Points scored for ENRB 1-8(a) = 1 point			
Worked Example 1-8©	An existing building uses motion sensors to control the lightings in all staircases and toilets.			
	(i) <u>Toilets</u>			
	Total light fittings to be controlled by motion sensors = 2×350 nos.			
	Power consumption by light fitting = $2 \times 350 \times 42 \text{ W} = 29,400 \text{ W}$			
	Assume 5 hours per day that the light fittings are off when it is not occupied.			
	Electricity saving = 29,400 W x 5 hours = 147 kWh/day			
	Annual electricity saving = $147 \times 365 = 53,655 \text{ kWh/yr}$			
	(ii) Staircases			
	Total light fittings to be controlled by motion sensors = 2×180 nos.			
	Power consumption by light fitting = $2 \times 180 \times 21 \text{ W} = 7,560 \text{ W}$			
	Assume 10 hours per day that the light fittings are off when it is not used			
	Electricity saving = 7,560 W x 10 hours = 75.6 kWh/day			
	Annual electricity saving = 75.6 x 365 = 27,594 kWh/yr			
	Total annual electricity saving using motion sensors = 53,655 +27,594 = 81,249 kWh/yr			
	% energy savings = Energy savings / Total building energy consumption			
	% energy savings = 81,249 / 9,915,655 = 0.819 %			
	Points scored for 1-8 [°] = 2 points for every 1 % energy saving = $2 \times 0.819 = 1.64$ points			

ENRB 1-9 ENERGY POLICY AND MANAGEMENT

Objectives	To establish energy policy and targets for the better building energy efficiency
Applicability	Generally applicable to all buildings.
Baseline Standard	Nil.
Requirements	 (a) 0.5 point can be scored for establishing Energy Policy, energy targets and regular review with top management. (b) 0.5 point can be scored for having measures or strategies for energy improvement plans to achieve the energy target set over the next 3 years. Committed energy savings accrued from the proposed measures should be quantified.
Documentary Evidences	 (a) Energy Policy with senior management's endorsement and energy targets for next 3 years. (b) List of energy efficiency improvement plans for the next 3 years and the computation of energy savings for each measure to arrive at the energy targets.
References	An energy policy is a written document stating the way the building management will use energy and what targets it hopes to achieve. It should show how the building management intends to achieve the targets and plans for how energy efficiency will continually be improved in the future. The policy should be developed in consultation with the senior management so as to secure commitment from the management.
Worked Example 1-9	 <u>Sample of Energy Policy</u> <u>Goals</u>: ABC Pte Ltd is committed to the responsible management of energy and water and by using these resources in the most efficient and environmentally responsible manner possible. Towards this end, ABC Pte Ltd shall: (a) improve energy efficiency continuously by implementing effective energy management (b) 74inimize environmental impact (c) have programs that support all operations and customer satisfaction while providing a safe and comfortable work environment.

(1	d) maintain an accer users.	otable level of com	ort level for staff	, tenants and othe	r building
<u>s</u>	Strategy:				
(a) Benchmark energ	y use of all facilitie	s by January 201	12.	
(1		011 baseline, red 2012 and 5 percer			rcent per
(4	c) Each year realistie	c energy reduction	targets will be se	et and monitored r	egularly.
(4	d) To regularly moni	tor and assess the	energy, gas and	water consumption	on.
(4	e) Any unusually hig	h usage will be inv	estigated and co	rrected.	
(1	(f) Educate employe	es about how to sa	ve energy at wo	rk and at home.	
(9	g) Our target for ene	rgy and water perf	ormance are:		
		Current yearly performance	Target yearly performance	% target reduction per year	
	Electricity kWh/m²/yr	9,915,000	9,615,000	3%	
T A	Applicability : This policy shall apply Approved by : Company CEO]	to all facilities, bus	iness units and e	employees.	

ENRB 1-10 RENEWABLE ENERGY

Objectives	Encourage the use of renewable energy sources in buildings.					
Applicability	Inclu	Includes all renewable energy sources (e.g. solar panels, wind turbine)				
Baseline Standard	Nil.					
Requirements			be scored based on the b ant of electricity by the rene		ndex and	
		Expected Energy	Every 1 % replacement of elect consumption) by renewable en			
		Efficiency Index (EEI)	Include tenants' usage	Exclude tenants' usage		
		≥ 50 kWh/m²/yr	5 points	3 points		
		< 50 kWh/m²/yr	3 points	1.5 points		
	Note : For computation of EEI, refer to worked example 1-8(a) under ENRB 1-8 – Energy Efficient Features					
Documentary Evidences		 Description and drawings on the renewable energy system and the extent of implementation; 				
		• Technical product information on the salient features of the renewable energy system and the expected renewable energy generated; and				
		 Calculation of the percentage replacement of electricity compared with the total annual electricity consumption of the building. 				
References	Nil.					

(I) Other Green Requirements

Part 2 – Water Efficiency

- ENRB 2-1 Water Monitoring
- ENRB 2-2 Water Efficient Fittings
- ENRB 2-3 Alternative Water Sources
- ENRB 2-4 Water Efficiency Improvement Plans
- ENRB 2-5 Irrigation System and Landscaping
- ENRB 2-6 Cooling Towers

ENRB 2-1 WATER MONITORING

Г

Objectives	Promote the use of private meters and leak detection system for better control and monitoring of water usage.
Applicability	Applicable to sub-metering provisions for major water uses of the building developments.
Baseline Standard	Nil.
Requirements	 <u>2-1 (a)</u> 1 point can be scored if the building's water consumption is monitored on monthly basis.
	 <u>2-1 (b)</u> 1 point can be scored if private water meters are provided for major water uses e.g. cooling tower, water features, irrigation system, swimming pools, tenants' usage where applicable.
	 2-1 (c) 1 point can be scored if there is provision of automated and/or smart metering for the monitoring and leak detection.
Documentary Evidences	 2-1 (a) Tabulation of the monthly water usage for the last 12 months and a graph showing the consumption trend from PUB monthly bills and each private meter's recording.
	 <u>2-1 (b)</u> Documentary evidences and/or photographs of each private water sub-meters and records of recording and monitoring; or
	Schematic drawings of cold water distribution system showing the location of the sub-meters provided.
	 <u>2-1 (c)</u> Documentary evidences and trend logging records to show the provision of the automated metering and leak detection system.
References	Nil.

ENRB 2-2 WATER EFFICIENT FITTINGS

Objectives	Reduce the use of potable water by encouraging the use of water efficient fittings under the PUB Water Efficiency Labeling Scheme (WELS) or adopt equivalent water efficient flowrate/flush volumes for the water fittings.			
Applicability	 Applicable to all water fittings covered by the WELS as follows: Basin taps and mixers Shower taps and mixers or showerheads Sink/bib taps and mixers Urinals and Urinal Flush Valves Dual-Flush Low Capacity Flushing Cisterns Note: Water closets in <u>public toilets</u> fitted with flush valve and automatic flush devices can be excluded in computation. 			
Baseline Standard	As specified under PUB Water Efficiency Labelling Scheme (WELS).			
Requirements	 Up to 12 points can be scored based on the number and water efficiency rating of the fitting type used. WELS Rating Water Efficiency Weightage for Point Allocation ✓✓ Very Good ✓✓ Excellent 12 Or 9 points can be scored if the building is certified with PUB Water Efficient Building. 			
Documentary Evidences	 Water fitting schedules showing the numbers, types and the approved rating of the water fittings in the prescribed tabulated format shown in the worked example. Documentary evidences such as WELS water efficiency label, catalogues, etc. A copy of PUB Water Efficient Building certificate. 			
References	PUB WELS - http://ww	w.pub.gov.sg/wels/rating	J/Pages/Requirements.aspx	

Worked Example 2-2

Example of a water fitting schedule showing the numbers, types and the approved rating of the proposed fittings.

	Туре	WELS rating		Mandatory Requirement MWELS	Total no. based on fitting type	
		Excellent	Very Good	Good	5 51	
1	Shower taps and mixers	0	30	30	60	
2	Basin taps and mixers	200	0	10	210	
3	Sink/bib taps and mixers	0	0	0	0	
4	Dual-flush low capacity flushing cisterns	0	80	0	80	
5	Urinals and urinal flush valves	50	0	0	50	
Total no.	. based on rating (A)	250	110	40	∑A = 400	
Weighta	ge (B)	12	9	0	-	
Total (A)	xB)	3000	990	0	∑(AxB) = 3990	

ENRB 2-3 ALTERNATIVE WATER SOURCES

Objectives	Use of suitable systems that utilize alternative water sources for non-potable uses such as irrigation, washing, water features, toilet flushing, etc (excluding cooling tower make-up water) to reduce use of potable water. Alternative sources can be referred to rainwater, greywater, NEWater, AHU condensate and recycled water from approved sources.					
Applicability	Applicable to all bui	Applicable to all buildings.				
Baseline Standard	Nil.	Nil.				
Requirements	Up to 3 points can b of the applicable us	e scored based on p es.	ercentage reductior	in potable water	usage	
	Percentac	ge reduction	Points]		
	-	50 %	3 points			
		50 %	2 points			
		10 %	1 point			
		10 /0]		
Evidences References Worked Example	alternative waterPUB water billsNil.	 Calculation showing the percentage reduction of potable water using the alternative water sources. PUB water bills showing monthly water consumption. Nil. Assuming rainwater is used for irrigation and the consumptions from PUB bills are 				
	Months	PUB Water (m ³)	NEWater (m ³)	Total (m3)	ן ר	
	January	1,774	149	1,923]	
	February	2,018	106	2,124		
	March	2,744	183	2,927		
	April	2,227	185	2,412	_	
	Мау	2,575	101	2,676	_	
	June	2,650	168	2,818	_	
	July	2,324	195	2,519	_	
	August	2,567	181	2,748	_	
	September	2,657	146	2,803	_	
	October	2,612	113	2,725	_	
	November	938	122	1,060	_	
	December	1,986	177	2,163 28,898		
	Total (m3/yr)	27,072	1,826		-	

Rainwater consumption = $1,826 \text{ m}^3/\text{yr}$
Total water consumption = 28,898 m ³ /yr
Percentage reduction in potable water = $1,826 / 28,898$
= 6.32%
Points scored for ENRB 2-3 = 1 point

ENRB 2-4 WATER EFFICIENCY IMPROVEMENT PLANS

Objectives	Establish plans and strategies to reduce the dependency of potable water usage.					
Applicability	Applicable to all buildings.					
Baseline Standard	Nil					
Requirements	 1 point can be scored if there are intent, measures and implementation strategies for water efficiency improvement plans over the next 3 years. Committed water savings accrued from the proposed measures should be quantified. 					
Documentary Evidences	 Water improvement plan and proposed measures to achieve these targets for the next three years. Calculation showing the estimated water savings for each proposed measure. 					
References	Nil.					

ENRB 2-5 IRRIGATION SYSTEM AND LANDSCAPING

Objectives	Provision of suitable control systems for irrigation system and use of plants that require minimal irrigation to reduce potable water consumption.					
Applicability	Applicable to buildings with landscaping provision.					
Baseline Standard	-					
Requirements	 <u>2-5(a)</u> 1 point can be scored if more than 50% of the landscape areas are served by water efficient irrigation system with features such as rain sensor, soil moisture sensor or equivalent control system. <u>2-5(b)</u> 1 point can be scored if at least 50% of the landscape areas consist of drought 					
	tolerant plants that require minimal irrigation.					
Documentary Evidences	 2-5(a) Write up and details for the water efficient irrigation system; Relevant layout plans showing the overall landscape areas and the areas that are using the system; and Calculation to determine the percentage of the landscape areas that are using the system. 2-5(b) Relevant layout plans showing the overall landscape areas and the areas that use drought tolerant plants or plants that require minimal irrigation; and Calculation showing the percentage of the landscape areas that use drought tolerant plants or plants that require minimal irrigation. 					
References	The list of drought tolerant / resistant plant species may be obtained from the online website: <u>http://florafaunaweb.nparks.gov.sg/;</u> go to "Browse Plants" > "Plant Characteristics & Use" > "Green Roof".					

ENRB 2-6 COOLING TOWERS

Objectives	Reduce potable water consumption for cooling purpose.
Applicability	Applicable to building developments with water-cooled central chillers systems, and water-cooled package units.
Baseline Standard	Nil.
Requirements	 <u>2-6 (a)</u> 1 point can be scored for the use of cooling tower water treatment system which can achieve 7 or better cycles of concentration at acceptable water quality. <u>2-6(b)</u> 1 point can be scored for the use of NEWater or on-site recycled water from approved sources to meet the water demand for cooling tower purpose.
Documentary Evidences	 <u>2-6(a)</u> Lab test showing cooling tower water treatment system can achieve 7 or better cycles of concentration at acceptable water quality. <u>2-6(b)</u> Relevant drawings and details showing how the NEWater or other recycled water source is used for the cooling tower water demand.
References	Nil.

(II) Other Green Requirements

Part 3 – Sustainable Operation & Management

- ENRB 3-1 Building Operation & Maintenance
- ENRB 3-2 Post Occupancy Evaluation
- ENRB 3-3 Waste Management
- ENRB 3-4 Sustainable Products
- ENRB 3-5 Greenery
- ENRB 3-6 Environmental Protection
- ENRB 3-7 Green Transport

ENRB 3-1 BUILDING OPERATION & MAINTENANCE

Objectives	To encourage the adoption of green practices that is environmentally friendly and sustainable in the operation and maintenance of a building.
Applicability	Generally applicable to all types of buildings.
Baseline Standard	Nil.
Requirements	 3-1(a) 1 point can be scored if the building management has an Environmental Policy that reflects sustainability goals set for the building and its systems. 3-1(b) 1 point can be scored if the building management has a green guide which is disseminated to the building occupants and visitors to inculcate 'green' mindset. Best practices to reduce energy use, water use and maintain a good indoor environment should be documented in this green guide. Building management is also required to demonstrate evidences of occupant involvement in environmental sustainability. 3-1(c) Up to 1 point can be scored if the in-house building management team comprises:- one Certified Green Mark Facilities Manager (GMFM) (0.5 point) or one Certified Green Mark Professional (GMP) (1 point) or one Singapore Certified Energy Manager (SCEM) (1 point). 3-1(d) Up to 1 point can be scored if the environmental management system of the building is ISO 14000 or ISO 50001 certified.
Documentary Evidences	 3-1(a) A copy of the Environmental Policy with endorsement or mandate by top management. 3-1(b) A copy of the building green guide containing best practices for energy and water conservation and good indoor environment; and also the details of the environmental friendly facilities and features within the building and their uses in achieving the intended environment performance during building operation. Supporting documents on efforts/various avenues to disseminate the green guide to occupants and to inculcate 'green' mindset in occupants. 3-1(c) Certified true copies of the certificate of GMFM or GMP or SCEM of in-house building management team and confirmation of their involvement and contribution in the Green Mark assessment.

	 <u>3-1 (d)</u> A certified true copy of the ISO 14000 or ISO 50001 certificates, which are within the validity period at the time of assessment. The scope of activities mentioned in the certificate shall be relevant to the building and/or building management/operations.
References	 The Environment Policy is a written commitment of the management's stance towards the building environment in which it operates. The policy shall outline management's intent to reduce its carbon footprint, improve recycling, minimizing waste, improve efficiencies of its building systems, etc. It must be signed by top management to demonstrate that it is a company policy and reviewed at regular intervals. The policy must be communicated to employees and others working on behalf of the management. The policy shall also include a framework for continual improvement to environmental performance and pollution prevention and regulatory compliances.

ENRB 3-2 POST OCCUPANCY EVALUATION

Objectives	A post-occupancy evaluation is a survey which includes questions for building occupants about the building operations. These include thermal comfort, lighting quality, cleanliness, work environment, furniture and more. The objective is to gauge occupants' satisfaction on indoor environmental quality and identify corrective actions that will enhance comfort.						
Applicability	Applicable to all buildings.						
Baseline Standard	Satisfactory level of more than 80% to be achieved.						
Requirements	 <u>3-2(a)</u> 2 points can be scored if building management conduct post occupancy survey to evaluate occupants' satisfaction on indoor environmental performance. Required number of people surveyed shall be 10% of total occupancy and up to 100 maximum. A minimum 5 people shall be surveyed if total occupancy is less than 50. <u>3-2(b)</u> 1 point can be scored for corrective actions taken following the post occupancy evaluation. 						
Documentary Evidences	 3-2(a) A written confirmation on the total no. of building occupancy. Summary of the complete analysis of the survey forms. Survey forms submitted by the respondents. 3-2(b) List of the corrective actions based on the respondents' comments. Acknowledgement from the complainant on the action taken by the building management. 						
References	Nil.						

ENRB 3-3 WASTE MANAGEMENT

Objectives	To reduce waste consumption by recycling, monitoring and educating the building occupants.				
Applicability	Applicable to all buildings.				
Baseline Standard	Nil.				
Requirements	 3-3(a) 2 points can be scored for the provision of facilities or recycling bins for collection and storage of different recyclable waste such as paper, glass, plastic etc. 3-3(b) 2 points can be scored for the promotion of waste minimization and recycling among occupants, tenants and visitors. 3-3(c) 1 point can be scored for the provision of a proper storage area for the recyclable waste. 3-3(d) 2 points can be scored for quantifying the recyclables and monitoring the recycling program for continuous improvement. Recyclables include glass, paper, metal (including drinking cans), plastic and other wastes such as printer cartridges, food waste, etc. 				
Documentary Evidences	 3-3(a) Plan layout showing the location of the recycling bins for collection and storage of different recyclable wastes. 3-3(b) Supporting documents on efforts and avenues to educate occupants, tenants and visitors on waste reduction and recycling. 3-3(c) Plan layout showing the location of the storage area for the recyclable waste and the recycle bins for the different recyclables. 3-3(d) Details of monthly data collections and amount of recyclables generated inhouse. 				
References	 Waste management at <u>http://app2.nea.gov.sg/topics_waste.aspx</u> Waste minimization and recycling at <u>http://app2.nea.gov.sg/topics_wasteminimisation.aspx</u> 				

ENRB 3-4 SUSTAINABLE PRODUCTS

Objectives	Encourage the use of materials that are environmentally friendly and sustainable which are certified by approved local certification body.							
Applicability	Applicable to all buildings							
Baseline Standard	Nil.							
Requirements	Up to 8 points are allocated for the use of environmentally friendly products that are certified by approved local certification body. Points awarded will be based on the weightage, extent of coverage and impact. The weightage given will be based on the extent of environmental friendliness and the rating as determined by the approved local certification body subject to BCA's evaluation.							
	Extent of Environmental Friendliness of products	Weightage for Point Allocation						
	Good	1						
	Very Good	1.5						
	Excellent	2						
	The use of environmental friendly products used for the main building elements or functional spaces will be considered as <u>high impact</u> if the quantities used by percentage are more than 50% (i.e. extent of coverage) as compared to the total quantities used for the same intended purpose. Items that do not meet the minimum coverage or are used in other common areas, external works etc will be considered as <u>low impact</u> . Note: The point allocated for low volatile organic compound (VOC) paints and adhesives certified by approved local certification body can be found in ENRB 4-2 and hence shall not be included in the scoring for ENRB 3-4.							
Documentary Evidences	 Certification from approved local certification body (such as SGLS and SGBC) which should spell out the material certification standards, rating and details. Technical product information. 							
References	 Singapore Green Building Product certification Certified products : <u>http://www.sgbc.sg/index.php/certification/assess/C109/</u> Scoring method : <u>http://www.sgbc.sg/index.php/certification/cert_faqs/</u> 							
	Singapore Environmental Council	at <u>http://www.greenlabel.sg/sgl</u>	<u>s</u>					

	1								
Worked Example 3-4(i)	 Determine if the environmental friendly products selected are certified with approved certification body and the product rating. 								
3-4(1)	2. Check if the products used are meant for main building elements or functional spaces and can be considered as <u>high impact</u> . Examples are internal drywall partitions in every functional space unit, carpets for office spaces, etc. Products that are meant for common areas and external works such as toilets, lobbies and landscaping areas are considered as <u>low impact</u> .								
	3.	3. If the selected products are potential high impact items, then determine the quantities used for these products as compared to the total quantities required for the same intended purpose. If the quantities of the products are more than 50% of the total requirement, it is considered as <u>high impact</u> . If it is less than 50% of the total requirement then it should be considered as <u>low impact</u> . Example of products that are rated as 'Good' by the approved local certification							
		body	<i>.</i>		·				
		Prod	lucts and Extent of coverage	With approved certification	Points allocated based on impact	Weightage based on rating	Points scored		
		(a)	Carpets for all office spaces	Yes	1	1	1		
		(b)	Panel boards as internal partition for more than 50% of office spaces	Yes	1	1	1		
	Points scored for 3-4 (i) = 1+1 = 2 points								
Worked Example 3-4(ii)	Note: Certain products have more environmentally friendly features than others. Other than recycled materials, they may have added features like low VOC assembly or manufactured with resource efficient processes, durability etc which will render the products more environmental superior than others. If the certified products selected are more environmental superior products and are rated by the approved local certification body as of better rating, higher weightage will be given in term of point scoring.								
	Exa	ample	of a proposed de	velopment with	the following pro	ovisions:			
	(a)	Use	of carpets for all c	office spaces. F	Product is not cer	tified.			
		(b) Use of panel boards as internal partitions for more than 50% of the office spaces and the product is rated to be 'Very Good' by the approved certification body.							
		(c) Precast concrete road kerbs. Product is rated as 'Good' by approved local certification body.							
	• •		of roof waterproof certification body.	• •	oduct is rated as	s 'Very Good' I	by approved		
	• •		of wooden doors certification body.		Product is rated a	as 'Excellent' I	by approved		

Pro	oducts and Extent of coverage	With approved certification	Points allocated based on impact (A)	Weightage based on rating (B)	Points scored (AxB)
(a)	Carpets for all office spaces	No	NA	NA	0
(b)	Panel boards as internal partition for more than 50% of office spaces	Yes	1	1.5	1.5
(c)	Precast road kerbs	Yes	0.5	1	0.5
(d)	Roof waterproofing	Yes	0.5	1.5	0.75
(e)	Wooden doors for all areas	Yes	1	2	2

ENRB 3-5 GREENERY PROVISION

Objectives	Encourage greater use of greenery to reduce heat island effect.						
Applicability	Applicable to buildings with landscaping areas.						
Baseline Standard	Nil.						
Requirements	 <u>3-5(a)</u> Up to 5 points can be scored for the provision of greenery within the developments including roof top/ sky garden and green roof and vertical greening. Greenery Provision (GnP) is calculated by considering the 3D volume covered by plants using the following Green Area Index (GAI) : Grass GAI = 1 ; Shrubs GAI = 3; Palms Trees GAI = 4; Trees GAI = 6 Greenery Provision (GnP) = Total Green Area / Total Site Area 						
	GnPPoints Allocation $0.5 \text{ to } < 1.0$ 1 $1.0 \text{ to } < 2.0$ 2 $2.0 \text{ to } < 3.0$ 3.5 ≥ 3.0 5 $3-5(b)$ ••1 point for the use of compost recycled from horticulture waste and/or organic compost. $3-5(c)$ ••Provision of roof top greenery: 1 point for $\geq 20\%$ to 50% of useable roof areas and 2 points for $\geq 50\%$ of useable roof areas. $3-5(d)$ ••Provision of vertical greenery: 1 point for $\geq 10m^2$ to $<50m^2$ greenery areas and 2 points for $\geq 50m^2$ greenery areas.						
Documentary Evidences	 For 3-5(a) Plan layouts showing the site area as well as the greenery that is provided within the development; Calculation showing the extent of the greenery provision in the prescribed tabulated format as in worked example 3-5(a). For 3-5(b) Documentary evidences stating the compost used is made from recycled horticulture waste and/or organic compost with certification from approved local certification body. Horticulture waste is manufactured from grass, leaves and tree clippings. 						

	 For 3-5(c) Plan layouts showing the greenery area on the roof top and the calculation of the percentage area compared to useable total roof area. For 3-5(d) Plan layouts showing the vertical greenery area and the calculation of this area. 								
References	Nil.								
Examples	 Determine the number of trees, palms and the areas for shrub and turfs and other greenery area The canopy, radius and Green Area Index are pre-determined design parameters applicable for all developments. Compute the green areas as shown in the Table 3-5(a) below. Table 3-5(a) – Calculation of the Greenery Provision 								
	DescriptionQty (A)Canopy area (B)Radius (C)Green Area Index GAIGreen Area (A)x(B)x(C2)xGAI								
	Trees (Nos)	20	3.14	3.5	6	4615.8			
	Palms (Nos)	20	3.14	1	4	251.2			
	Shrubs (m ²)	20	NA	NA	3	60			
	Landscape area + Roof garden + vertical greening (m²)100NANA1100								
				Tota	I Green Area :	5027			
	Assume site area is $4000m^2$ Greenery Provision (GnP) = Total Green Area / Total Site Area = $5027 / 4000$ = $1.26 (1.0 \text{ to } <2.0)$ Therefore, points scored for $3-5(a) = 2$ points								

ENRB 3-6 ENVIRONMENTAL PROTECTION

Objectives	To encourage the adoption of sustainable and environmental friendly procurement and purchasing policy in the operation and maintenance of the building and the use of environmentally friendly refrigerant in the air-conditioning system.
Applicability	Generally applicable to all buildings.
Baseline Standard	Nil.
Requirements	 <u>3-6(a)</u> 1 point can be scored for the adoption of sustainable and environmental friendly procurement and purchasing policy in the operation and maintenance of the building.
	 <u>3-6(b)(i)</u> 1 point can be scored for using refrigerants with ozone depletion potential (ODP) of zero and with global warming potential (GWP) of less than 100.
	 <u>3-6(b)(ii)</u> 1 point can be scored for installing a refrigerant leak detection system at critical areas of the plant rooms with chillers and other equipment with refrigerants.
Documentary Evidences	 For 3-6(a) Documentary evidences stating management's green procurement policy and extracts of tender specification or quotation for environmental friendly products.
	 For 3-6(b) Extracts of technical specification or photographs of chiller's or condensing unit's name plate that shows refrigerant used for the chillers. Technical specification and/or drawings/photographs showing the refrigerant leak detection system.
References	<u>Green Procurement Policy</u> The goal of this policy is to reduce the adverse environmental impact of building owners' purchasing decisions by buying goods and services from contractors and vendors who are committed to environmental sustainability.
	The following are some strategies for this Policy:-
	a) Purchase only most up-to-date energy efficient equipment, where applicable. This includes, but not limited to air-conditioning system, lightings and office appliances.
	b) Purchase only readily biodegradable and phosphate free cleaning detergents and products that meet approved certification standards and have eco-labels such as Singapore Green Label Scheme (SGLS).
	c) Purchase only bio-based plastic products that are biodegradable and compostable, such as bags, food and beverage containers, and cutlery.
	06

d	d) For building maintenance, purchase products/materials such as paint, carpeting, adhesives and furniture, with the lowest amount of volatile organic compounds (VOCs), highest recycled content, and low or no formaldehyde.
e	e) For landscape maintenance, to employ landscape contractors who are familiar with sustainable landscape management techniques such as, drip irrigation, composting and use of mulch and compost produced from regionally generated plant debris and/or food waste.

ENRB 3-7 GREEN TRANSPORT

Objectives	Promote the use of public transport and environmental friendly transport options to reduce pollution from individual car use.
Applicability	Generally applicable to all buildings.
Baseline Standard	Nil.
Requirements	 3-7(a) 1 point can be scored if building has good access (< 500m walking distance) to public transport networks such as MRT/LRT stations and bus stops. 3-7(b) 1 point can be scored for provision of covered walkway to facilitate connectivity and use of public transport. 3-7(c) 1 point can be scored for provision of adequate priority parking lots for hybrid/electric vehicle within the development. 3-7(d) Up to 1 point can be scored for the provision of covered/sheltered bicycles parking lots with adequate shower facilities. (<i>Minimum provision of 10 bicycle parking lots; cap at</i> 30 <i>bicycle parking lots where applicable</i>): 1 point if the number of bicycles parking lots is ≥ 1% x (GFA/10)
Documentary Evidences	 0.5 point if the number of bicycles parking lots is ≥ 0.5% x (GFA/10) For 3-7(a) Site layout plan in the context of the surrounding area showing the location of the building and the location of the MRT/LRT stations and bus stops.
	 For 3-7(b) Site layout plan showing the connection of covered walkway from the development to the MRT/LRT stations or bus stops; and Documentary evidences or letter of commitment stating the requirement to provide covered walkway.
	 For 3-7(c) Documentary evidences or letter of commitment stating the requirement to provide priority parking lots for hybrid/electric vehicle. For 3-7(d) Documentary evidences or letter of commitment stating the requirement to provide covered/sheltered bicycles parking lots, shower and changing facilities for the development and the quantity and location of bicycle lots provided. The shower and changing facilities shall be accessible to the cyclists.
References	Nil.

Worked Example 3-7(d)	 Example 1 An existing building has a Gross Floor Areas (GFA) of 12,000 square metres. Minimum number of bicycle parking lots = 1% x (12000/10) = 12 lots (with adequate shower facilities) Minimum number of bicycle parking lots = 0.5% x (12000/10) = 6 lots (with adequate shower facilities) 1 point will be scored if the number of bicycles parking lots provided ≥ 12 lots. 0.5 point will be scored if the number of bicycles parking lots provided ≥ 10 lots with adequate shower facilities. Since the minimum provision of 10 bicycles parking lots is required, no points given if the number of bicycles parking lots < 10 lots.
	 Example 2 An existing building has a Gross Floor Areas (GFA) of 70,000 square metres. Minimum number of bicycle parking lots = 1% x (70000/10) = 70 lots (with adequate shower facilities) (1 point) Minimum number of bicycle parking lots = 0.5% x (70000/10) = 35 lots (with adequate shower facilities) (0.5 point) 1 point will be scored if the number of bicycles parking lots provided is 30 lots with adequate shower facilities. Note : Cap at 30 bicycles parking lots

(II) Other Green Requirements

Part 4 – Indoor Environmental Quality

- ENRB 4-1 Indoor Air Quality (IAQ)
- ENRB 4-2 Indoor Air Pollutants
- ENRB 4-3 Lighting Quality
- ENRB 4-4 Thermal Comfort
- ENRB 4-5 Internal Noise Level

ENRB 4-1 INDOOR AIR QUALITY PERFORMANCE

Objectives	Ensure building ventilation systems are designed and installed to provide acceptable IAQ under normal operating conditions.
Applicability	Applicable to all air-conditioned buildings.
Baseline Standard	-
Requirements	 <u>4-1(a) Pre-requisite Requirement</u> 4 points can be scored for performing full IAQ audit by an accredited laboratory under Singapore Accreditation Council. Results of audit shall comply with NEA's Guidelines for Good Indoor Air Quality in Office Premises or SS554:2009 Code of Practice for Indoor Air Quality for Air-conditioned Buildings. <u>4-1(b)</u> 1 point can be scored for implementing effective IAQ management plan to ensure that building ventilation systems are frequently maintained to ensure clean delivery of air. <u>4-1(c)</u> 1 point can be scored for the provision of high efficiency air filter (at least MERV 13) in Air Handling Units. <u>4-1(d)</u> 1 point can be scored for providing Room Temperature display (at least 1 unit per floor). <u>4-1(e)</u> 1 point can be scored for providing Carbon Dioxide sensor display (at least 1 unit per floor).
Documentary Evidences	 For 4-1(a) IAQ audit results/report by an accredited laboratory. For 4-1(b) Document or report on the implementation of the IAQ management plan. For 4-1(c) Technical product information which should include the minimum efficiency reporting value (MERV) parameters of the filters; For 4-1(d) Layout plan showing the location of Room Temperature display. For 4-1(d) Layout plan showing the location of Carbon Dioxide sensor display.

References	 NEA's Guidelines for Good Indoor Air Quality in Office Premises SS 554:2009 - Code of Practice for Indoor Air Quality for Air-conditioned Buildings IAQ management programme, refer to guidelines given in Annex G of SS554:2009 Code of Practice for Indoor Air Quality for Air-conditioned Buildings.
	• Air filter classification can be found in Annex E of SS554:2009 Code of Practice for Indoor Air Quality for Air-conditioned Buildings.

ENRB 4-2 INDOOR AIR POLLUTANTS

Objectives	Minimise airborne contaminants, mainly from inside sources to promote a healthy indoor environment.
Applicability	Generally applicable to all building developments.
Baseline Standard	Nil
Requirements	 <u>4-2(a)</u> 1 point can be scored for the use of low volatile organic compounds (VOC) paints certified under approved local certification body. <u>4-2(b)</u> 1 point can be scored for the use of adhesives certified by approved local certification body.
Documentary Evidences	 For 4-2(a) Layout plans and/or documentary evidences showing areas using the low VOC paints. Certification by approved local certification body. Technical specification of the low VOC paints. For 4-2(b) Documentary evidences on the use of the adhesives. Certification by approved local certification body. Technical specification of the adhesives.
References	Nil.

ENRB 4-3 LIGHTING QUALITY

Objectives	To encourage good workplace lighting quality to promote productivity and occupant comfort.
Applicability	Generally applicable to all internal areas.
Baseline Standard	Schedule of lighting requirements stated in SS531:Part 1:2006 or CP 38:1999.
Requirements	 4-3(a) 1 point can be scored if the lighting levels comply with SS531 or CP38:1999 for various uses. 4-3(b) 1 point can be scored if at least 90% of occupants are able to control lightings by light switches. 2 point can be scored if at least 90% of occupants are able to control lightings by task lightings. 4-3(c) Up to 2 points can be scored for the use of high frequency ballasts in the fluorescent lightings if it is adopted in all applicable areas that are served by fluorescent lightings. 20% to < 40% - 0.5 point 40% to < 60% - 1 point 60% to < 80% - 1.5 points
Documentary Evidences	 80% and above - 2 points For 4-3(a) Tabulation of lux level measurements and plan layout showing the location of the measurements taken. For 4-3(b) Tabulation of areas where task lights or light switches are used. For 4-3(c) A summary sheet listing all fluorescent lightings used for the developments and those with high frequency ballasts. Technical specification for the high frequency ballasts used in all fluorescent luminaries.
References	CP 38:1999 : Code of Practice for Artificial Lighting in Buildings SS 531:Part 1:2006 : Code of Practice for Lighting of Work Places Part 1 – Indoor Lighting

ENRB 4-4 THERMAL COMFORT

Objectives	To encourage buildings to maintain good indoor conditions for thermal comfort.
Applicability	Generally applicable to all indoor air-conditioned environment.
Baseline Standard	Indoor conditions for comfort air-conditioning as stated in CP 13:1999.
Requirements	 <u>4-4(a)</u> 1 point can be scored if the indoor dry-bulb temperature is within 22.5 °C to 25.5 °C and relative humidity <70%. <u>4-4(b)</u> 1 point can be scored if occupants are able to control the indoor temperature.
Documentary Evidences	 Tabulation of temperature and relative humidity measurements and plan drawings indicating locations of sampled points taken. Tabulation of areas where temperature can be controlled by thermostats.
References	CP 13:1999 – Code of Practice for Air-Conditioning and Mechanical Ventilation in Buildings.

ENRB 4-5 INTERNAL NOISE LEVEL

Objectives	To control and keep the background noise in occupied spaces at levels appropriate to the intended use of the spaces.
Applicability	Generally applicable to all building developments.
Baseline Standard	Recommended ambient sound level in CP 13:1999 or SS 553:2009.
Requirements	1 point can be scored if the occupied spaces in buildings are maintained at the recommended ambient sound levels stated in CP 13:1999 or SS 553:2009.
Documentary Evidences	 Tabulation of sound levels measurements and comparison with the recommended sound levels in CP 13"1999 or SS 553:2009. Plan drawings indicating locations of sampled points taken.
References	CP 13:1999 – Code of Practice for Air-Conditioning and Mechanical Ventilation in Buildings. SS 553:2009 - Code of Practice for Air-Conditioning and Mechanical Ventilation in Buildings.

(II) Other Green Requirements

Part 5 – Other Green Features

ENRB 5-1 Green Features and Innovations

ENRB 5-1 OTHER GREEN FEATURES

Objectives	Encourage the use of green features which are innovative and have positive environmental impact on water efficiency, environmental protection and indoor environmental quality of the buildings.
Applicability	Generally applicable to all building developments.
Baseline Standard	Nil.
Requirements	Up to 10 points can be scored for the use of the non-energy related green features depending on their potential environmental benefits or reduced environmental impacts. Examples of the green features are:-
	Water Efficiency
	 (i) Use of self cleaning façade system 2 points for more than 75% of the applicable facade areas 1 point for more than 50% of the applicable facade areas 0.5 point for at least 25% of the applicable facade areas
	 (ii) Use of grey water recycling system 2 points for all blocks of the development 1 point for at least one block of the development
	 (iii) Recycling of AHU condensate 1 point for more than 75% of the AHU condensate 0.5 point for at least 50% of the AHU condensate
	Environmental Protection
	 0.5 point for the use of non-chemical termite treatment system such as termite baiting system, anti-termite mesh.
	 0.5 point for the provision of at least 5 nos. of compost bins to recycle organic waste.
	(iii) 0.5 point for the use of non-chemical water treatment system for swimming pools.
	 (iv) 1 point for the provision of double refuse chutes for separating recyclable from non-recyclable waste.
	 (v) Treatment of storm water runoff before discharge to public drains. 2 points for treatment of run-off for more than 10% of total site area 1 point for treatment of run-off for up to 10% of total site area
	Note: The treatment of storm water runoff shall be through provision of infiltration features or design features as recommended in PUB's ABC Water design Guidelines.

((vi) 0.5 point for use of new generation of refrigerants with ODP =0 and GWP <150.
1	ndoor Air Quality
((i) 1 point for the use of pneumatic waste collection system.
((ii) Use of Ultraviolet light-C band (UV) emitters in air handling units to improve indoor air quality. 1 point for more than 75% of the AHU have this emitter 0.5 point for at least 50% of the AHU have this emitter
((iii) Use MERV 14 or better – 0.5 point
<u>(</u>	<u>Others</u>
((i) 0.5 point for the use of siphonic rainwater discharge system at roof.
((ii) 0.5 point for the provision of carpark guidance system.
((iii) 1 point for having Green Lease arrangement for building tenants.
((iv) 0.5 points for the use of Titanium Dioxide coating to remove odour in toilets.
(0.5 points for the use of automatic condenser tube cleaning system for the chillers.
((vi) Encourage tenants to take up Green Mark Occupant Centric Schemes. 0.5 point for having at least 1 tenant certified under Green Mark Occupant-Centric Schemes 1 point for achieving Green Mark Pearl Award 2 points for achieving Green Mark Pearl Prestige Award
((vii) Provision of Green Corner, which is an area dedicated to education and promotion on green and environmental sustainability. It must be located at prominent location/s, where occupants have easy access to it. 0.5 point for having posters and displays on green and sustainability. 1 point for having screen showing the building's real time energy performance.
((viii) Install powermeters for monitoring of air side system. 0.5 point for installing power meters to all air side system and link up to BMS for ease of monitoring and calculating total system kw/ton. 1 point for achieving 0.28 kw/ton (Total air side system kWh / total cooling load Rtonh) 2 points for achieving 0.25 kw/ton (Total air side system kWh / total cooling load Rtonh)
((ix) 1 point for having an energy performance contract with a SGBC accredited Energy Performance Contracting Firm that guarantees the operational system efficiency of a chiller plant. The contract should at least be valid for the next 3 years.

Documentary Evidences	• Write-up describing the provision of the green features and the extent of implementation.
	 Technical product information (including drawings and supporting documents) of the green features;
	• Details showing the positive environmental impact and benefits that the features can bring to the building.
References	-