Industry Briefing on Mandatory Energy Improvement (MEI) Regime

15 & 16 Jul 2025

Presented by SM/ Wee Kai Siong

Agenda

- 1. Overview
- 2. MEI Regime
 - Buildings that are considered energy-intensive
- 3. Code on MEI
 - Methodology for calculating annual building energy consumption and EUI
 - Prescribed manner to carry out an audit on the energy use of buildings and systems
 - Submission procedures
- 4. Q&A

Methodology

Energy Audit

Submission Procedure

FAQ

Buildings contribute about 20% of Singapore's carbon emissions.

Green buildings can contribute a big part in our transition to a lowcarbon and climate resilient future.

Charting Singapore's Net Zero Future

Achieve net zero emissions by 2050

Long-Term Low-Emissions Development Strategy (LEDS)

Reduce 2030 emissions to 60 MtCO₂e after peaking emissions earlier 2030 Nationally Determined Contribution (NDC)

Accelerating Low-Carbon Transition in Industry, Economy and Society

Catalyse business transformation

- Sustainable energy and chemicals hub in conjunction with industry
- · Grants for energy efficiency and emissions reduction

Invest in low-carbon technologies

- Carbon Capture Utilisation and Storage
- · Low-carbon hydrogen
- Solar and energy storage systems

Pursue effective international cooperation

- · International carbon markets with high quality carbon credits
- · Regional power grids for green energy

Adopt low-carbon practices

· Green commutes via public transport, Walk-Cycle-Ride & cleaner energy vehicles

Right-pricing carbon to shape business decisions and consumer behaviour

Carbon tax S\$50-80/tCO2e by 2030

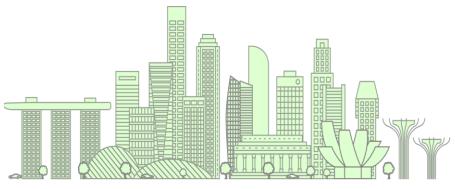
EVERYONE CAN PLAY A PART

Public sector

Achieve net zero emissions across public sector around 2045 as part of GreenGov.SG

Private sector

Develop and adopt low-carbon solutions, and pursue green growth opportunities


Individuals Contribute to climate friendly initiatives

Creating a Sustainable Built Environment

Overview

Singapore Green Building Masterplan (SGBMP) "Building our Green Future Together"

Singapore Green Plan 2030

Greener Infrastructure and Buildings under 'Energy Reset' pillar

80% of buildings to be green (by GFA) by 2030

VISION

"A leading green **Built Environment sector** mitigating climate change and providing a healthy, liveable and sustainable Built Environment for all"

80% of new developments (by **GFA)** to be Super Low Energy (SLE) buildings from 2030

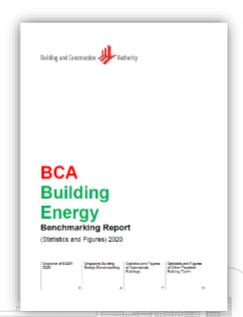
80% improvement in energy efficiency (from 2005 levels) for best-in-class buildings by 2030

Benchmarking of building performance

2013

Overview

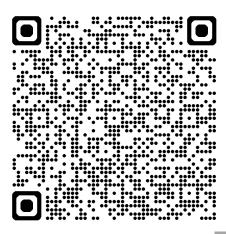
- All building owners are required to submit their building energy performance data
- Building Energy
 Benchmarking
 Report published
 yearly


2017

Building owners could • opt to voluntarily have their building's energy data disclosed to the public

2020

Circular to give notice that data submitted from 2020 onwards would be published in the following year 2021


 Identify all buildings in the data that we publish, beginning with commercial buildings

Healthcare facilities, Educational institutions, Civic Community and Cultural

Institutions and Sports & Recreation Centres

Details of building energy benchmarking and dataset can be found at BCA website <u>Building Energy Benchmarking</u>

There is an existing building stock that are considered energy intensive but are not required to undergo any energy efficiency improvement if the building owners chose not to undertake any major A & A or major energy use change.

MEI Regime

Announcement of MEI at Budget 2023

Amendments to the Building Control Act to introduce MEI regime

of Going forward, the suite environmental sustainability measures for existing buildings under the Building Control Act will be expanded to include the MEI regime. This regime will bridge the gap by levelling up the energy performance of energyintensive buildings.

Energy audits, improvements required for 'energy-intensive' buildings

SIMEX/SENSE (sublings will be set subtracted by the set of the set

that are not subject to minimum undergo major retrofitting works use and enhance its efficiency: achieve at least energy standards. The review will also include a num standards.

counced during the ministry's with a gross floor area of 5,000. Under the MD, buildings with and cost effective cens, such as rerental agreement to reduce energy. 2005 levels.

Santing this year, ICA will put
energy use intensity (IDD - that is,
placing faulty purts and sensors, or
consumption. Starting this year, ICA will put

committee of Sopph debate on square meters and up.

The new regime. Medicine of the Building and Construction to the building may be introduced by each of the Building and Construction to the control recognised to the Building and Construction to the control recognised to the Building and Construction to the control recognised to the Building and Construction to the control recognised to the Building and Construction to the control recognised to the Building and Construction to the control recognised to the succession of the Building and Construction to the control recognised printed and the building and the Bu

roment, particularly in buildings more energy efficient than 2005. They will then have to come up ingo 2.0, which provides co-fund—with further details to come, with "your energy performance" levels. All existings buildings that with measures to optimine energy ing. for reflocting works to that are not subject to minimum undergo major restricting works are detailed to the 155 per selection of the control of

Pemilik bangunan dengan prestasi tenaga lemah perlu jalani audit

PEMILIK bangunan dengan prestasi tenaga yang lemah akan dikehendaki menjalankan audit tenaga gan dan Penerangan merangkap Pembangunan Negadan melaksanakan langkah untuk mengurangkan penggunaan tenaga di bawah rejim Peningkatan Tenaga Wajib (MEI) baru yang akan diperkenalkan menjelang an Pembangunan Negara.

Langkah-langkah bagi mengurangkan penggunaan tenaga boleh termasuk penyelesaian mudah dan yang menjimatkan kos seperti menggantikan bahagian dan si serta bangunan institusi dengan Keluasan Lantai penderia yang rosak atau meminta penyewa meng- Kasar 5,000 meter persegi ke atas, katanya. gunakan lampu yang menjimatkan tenaga.

Pemilik bangunan yang ingin melakukan pengubahsuaian yang lebih meluas juga boleh memohon geran di bawah Skim Insentif Green Mark untuk Bangunan Sedia Ada 2.0, yang menyediakan pembiayaan bersama bagi kerja-kerja pengubahsuaian untuk mencapai sekurang-kurangnya piawaian Green Mark Platinum.

Demikian kata Menteri Negara Kanan (Perhubunra), Encik Tan Kiat How, dalam ucapannya semasa perbahasan Jawatankuasa Perbekalan (COS) Kementeri-

Sebagai permulaan, MEI akan dikenakan terhadap bangunan komersial yang paling intensif tenaga, kemudahan penjagaan kesihatan, pusat sukan dan rekrea-

"Pemilik bangunan akan dikehendaki mengekalkan tahap prestasi tenaga yang lebih baik dalam tempoh yang ditetapkan.

"Penguasa Bangunan dan Pembinaan (BCA) sedang berunding dengan industri mengenai butiran dan keperluan MEI dan akan berkongsi lebih banyak buti-

10 Sep 2024: Building Control (Amendment) Bill was passed by parliament

SINGAPORE: About 100 existing buildings that are deemed energy intensive will be required to carry out audits and improvement works under an upcoming regime aimed at greening more buildings in Singapore.

This comes after the Building Control (Amendment) Bill was passed by parliament on Tuesday (Sep 10).

In tabling the Bill for a second reading, Senior Minister of State for National Development Sim Ann said the proposed Mandatory Energy Improvement regime was "an important and necessary" move to accelerate the decarbonisation of Singapore's built environment.

The new regime, which targets energy-guzzling buildings that are currently not subject to minimum energy standards, is set to kick in from the third quarter of 2025.

WHAT IS THIS ABOUT?

The Mandatory Energy Improvement regime will apply to the most energyintensive buildings across four typologies - commercial buildings, healthcare facilities, institutional buildings, as well as sports and recreation centres.

These buildings must also have a gross floor area of 5,000 sqm and more. Smaller buildings consume less energy and will not be subject to the new regime to reduce regulatory burden and compliance costs, said the Building and Construction Authority (BCA).

In addition, buildings are considered energy-intensive if their energy use intensity (EUI) - the amount of energy used per square meter annually - exceeds a prescribed threshold for three straight years.

2 Jun 2025: Circular on the Implementation of Mandatory **Energy Improvement (MEI) Regime**

This circular is to update the industry on the new Mandatory Energy Improvement

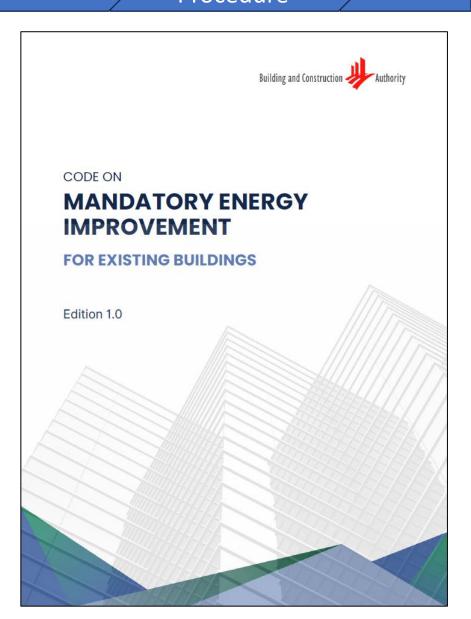
made to the Building Control Act ("BC Act") to introduce the MEI regime, aimed at reducing energy consumption in energy-intensive buildings. The MEI regime will support the shift towards a low-carbon built environment, contributing to our national commitment to achieve

- Under the MEI regime, an official notice will be issued to owners of energy-intensive buildings with a Gross Floor Area (GFA) of 5,000 square metres or more that fall under any
 - Commercial buildings

 - (iii) Institutional buildings (comprising educational, civic, community and cultural
 - (iv) Sports and recreation centres.
- Owners of the buildings described in Paragraph 3 above will be required to: (i) engage a qualified professional to conduct an energy audit of the building and its
 - (ii) implement measures to reduce the building's energy consumption to meet specified
 - (iii) maintain the improved energy performance over a designated period.

52 Jurong Gateway Road #11- 01 Singapore 608550 Tel: 1800 3425 222 | Fax: (65) 6334 4287

Effective Date


regime The MEI implemented with the commencement of the legislative amendments to the BC Act and the amendments legislative Building Control (Environmental Sustainability Measures Existing Buildings) Regulations on **30 September 2025.**

2 Jun 2025: MEI Website Updated with draft MEI regulation and MEI Code, Edition 1.0

go.gov.sg/bc-es-MEI

Regulatory Requirements	Effective Date
Building Control (Amendment) Act 2024	30 September 2025
Building Control (Environmental Sustainability Measures for Existing Buildings) (Amendment) Regulations 2025 (Draft)	30 September 2025
Building Control (Composition of Offences) Amendment Regulations 2025 (Draft)	30 September 2025
Code on Mandatory Energy Improvement for Existing Buildings, Edition 1.0 Issued in June 2025	30 September 2025

Energy-Intensive Buildings

Overview

If the Type 1 building's Energy Use Intensity (EUI)* exceeds the EUI threshold over a period of three consecutive years, building owner will receive MEI notice.

* Energy Use Intensity (EUI) is computed based on the annual energy consumption of a building over its Gross Floor Area (GFA) and has units in kWh/m^2 .yr.

Building Typologies

- a. Commercial buildings
- b. Healthcare facilities
- c. Institutional buildings
- d. Sports & recreation buildings

Size

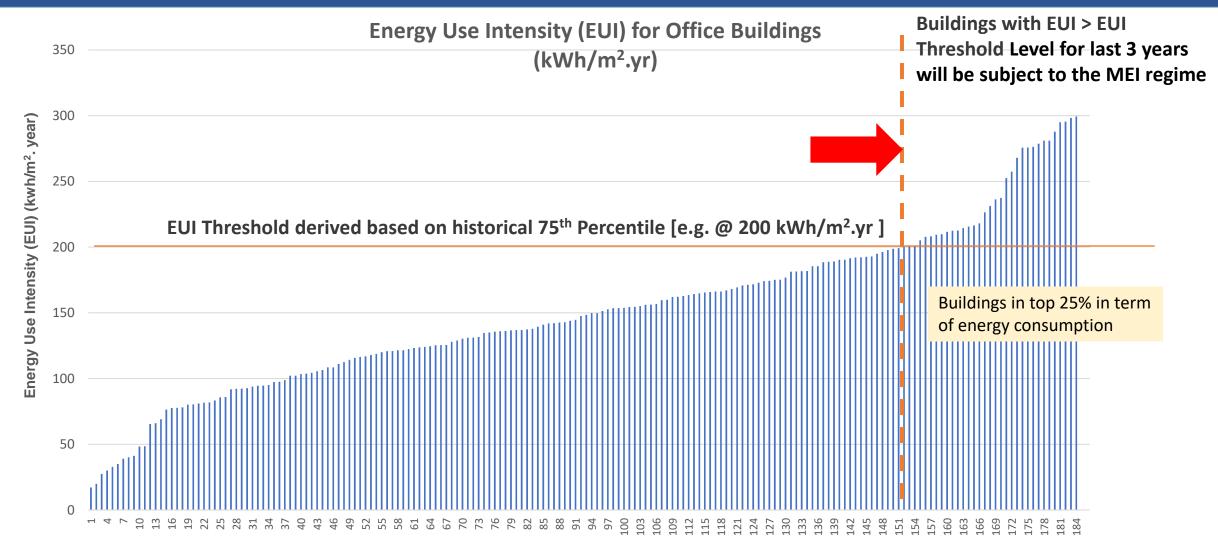
Gross floor area (GFA) of $\geq 5,000$ m²

- Retail
- Office
- Hotel

- Hospitals/ Specialist Clinics
- Polyclinics/private clinics
- Nursing Homes

- Autonomous Universities
- Other Educational Institutions
- Civic Institutions
- Community Institutions
- Cultural Institutions

- Recreation Clubs
- Sport Facilities


Definition

Type 1 building is a building (whether or not served by a prescribed cooling system) with a gross floor area of 5,000 m² or more, other than the following buildings:

- a) a building that is used primarily as a data centre;
- b) a building that is used as railway premises;
- c) a building that is used to provide airport services and facilities;
- d) a building that is used to provide port services and facilities;
- e) a general industrial building;
- f) a light industrial building;
- g) a religious building;
- h) a residential building;
- i) a special industrial building;
- j) a utility building.

"Energy-intensive building" means a Type 1 building that has an energy use intensity that exceeds the Energy Use Intensity (EUI) threshold.

Illustrative example for Office Buildings that would be subject to the MEI Regime

EUI Thresholds for different building sub-typologies

EUI Threshold						
Building Use	kWh/m²/yr					
A. Commercial buildings						
1. Hotel buildings	310					
2. Office buildings	200					
3. Retail buildings	495					
B. Healthcare facilities						
4. Hospital or specialist clinic	360					
5. Nursing home	120					
6. Polyclinics & Private Clinic	190					
C. Institutional buildings						
7. Autonomous university	190					
8. Civic institution	195					
9. Community institution	155					
10. Cultural institution	270					
11. Other educational institution	130					
D. Sports and recreation centres						
12. Recreation club	275					
13. Sports centre	180					
E. Other energy uses						
14. Data centre operations	6,595					
15. Laboratory operations	560					

What happens if my building is a mixed-use building?

 If your building has a combination of different uses, the EUI threshold can be pro-rated accordingly

What if my building has a combination of office and retail spaces say 60% office & 40% retail? Will my building be subject to office EUI threshold?

For example, a building with a gross floor area of 20,000 sqm

- 60% Office space (by GFA)
- 40% Retail space (by GFA)

The EUI threshold that is specific to this building will be:

In this case, if the building's EUI exceed the threshold of 318 kWh/m².yr for consecutive 3 years, it will be considered as energy intensive and may be subject to MEI the regime.

```
EUI threshold = (60% * EUI threshold for Office)+ (40% *EUI threshold for Retail)
              = (0.6 * 200) + (0.4 * 495)
```

 $= 318 \text{ kWh/m}^2/\text{yr}$

What happens if my building taps on District Cooling?

 For buildings that tap on District Cooling System (DCS), the energy consumption from the air-conditioning plant is not included in the EUI computation. Hence, the EUI threshold set will have to be reduced correspondingly.

What if my building taps on DCS? What should be the EUI threshold?

For example, a building with a gross floor area of 20,000 sqm

- 60% Office space (by GFA)
- 40% Retail space (by GFA)

The EUI threshold that is specific to this building will be:

In this case, if the building's EUI exceeds the threshold of 254.4 kWh/m².yr for 3 years, it will be considered as energy intensive and may be subject to MEI the regime

```
EUI threshold = [(60\% * EUI threshold for Office * 0.8) + (40\% * EUI threshold for Retail * 0.8)]
= [(0.6 * 200 * 0.8) + (0.4 * 495 * 0.8)]
= 254.4 \text{ kWh/m}^2/\text{yr}
```

What happens if my building has other energy uses?

- The EUI thresholds are established for data centre & laboratory operations.
- The EUI threshold will be pro-rated accordingly.

What if my building has systems that are for data centre operation or laboratory which are of high energy consumption? Wouldn't my building always be considered energy-intensive when compared to those of the same building typology?

For example, a building with a gross floor area of 20,000 m²

50% Office space (by GFA)

Overview

- 5% Data centre operation space (by GFA)
- 5% Laboratory operation space (by GFA)
- 40% Retail space (by GFA)

The EUI threshold that is specific to this building will be

EUI threshold = (50%*EUI threshold for Office) + (5%*EUI threshold for Data centre)

(5%*EUI threshold for Laboratory) + (40%*EUI threshold for retail space)

= (0.50 * 200) + (0.05 * 6595) + (0.05 * 560) + (0.4 * 495)

 $= 655.75 \, kWh/m^2/yr$ Official (Closed)/ Non-Sensitive

In this case, if the building's EUI

exceeds the threshold of 655.75

kWh/m².yr for 3 years, it will be

considered as energy intensive and

may be subject to MEI the regime

Energy Audit Requirements

01

Building Level Assessment

- Evaluation of overall energy use profiles and consumption of building and systems.
- Walkthrough surveys to assess building conditions, identify major energy-consuming systems, and review maintenance practices to determine areas for improvement.

02

System Level Assessment

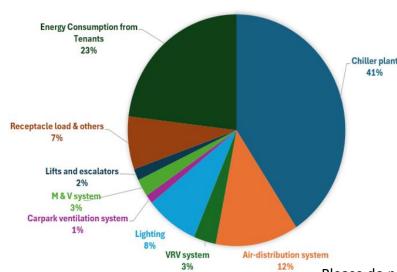
- Technical evaluation of building cooling systems and other high energy consuming systems, where relevant.
- Measurement and verification of operating system efficiency and performance.
- Observations on control settings, operating schedules and maintenance conditions to identify specific opportunities for energy efficiency improvements.

03

Energy Efficiency Improvement Plan (EEIP)

- Feasibility study of energy efficiency measures identified.
- Cost and benefits analysis which include energy savings, implementation costs etc.
- Recommended measures to achieve the minimum required EUI reduction.

Energy Audit Requirements


Overview

Building Level Assessment

- Evaluation of overall energy use profiles and consumption of building and systems.
- Walkthrough surveys to assess building conditions, identify major energy-consuming systems, and review maintenance practices to determine areas for improvement.

- Building owner's operations and systems:
 - (i) Owner/Landlord-operated systems and equipment and
 - (ii) Central services and shared facilities related to building services and operation.
- (b) **Tenant operations**:
 - (i) Energy consumption within leased spaces and
 - (ii) Where recommended, tenantspecific equipment and processes that are energy-intensive.

Breakdown of Energy Consumption by End-Use (Building Level)

Historical Energy Consumption

Review past 3 consecutive years of consumption data

Walkthrough Survey

Visually inspect building and major energyconsuming systems to identify areas of wastage and inefficiencies.

Data Collection of electricity use

Sub-metering data for major building systems. Energy bills from key tenants. Spot measurements.

Inventory of systems & equipment

List of major energy-consuming items incl type, quantity, age, rated capacity, rated performance, controls etc

> **Analysis of collected data** Identify energy use profiles and peak demand period

Central Chilled-

Water Plant/VRF

Air Handling Units and Distribution System

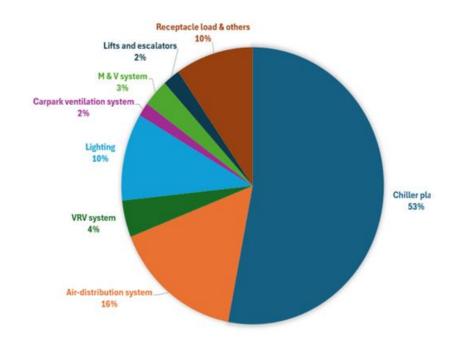
Central Hot Water System

Lighting (indoor & outdoor)

Mech Ventilation (carpark & kitchen)

Lifts and Escalators

02


System Level Assessment

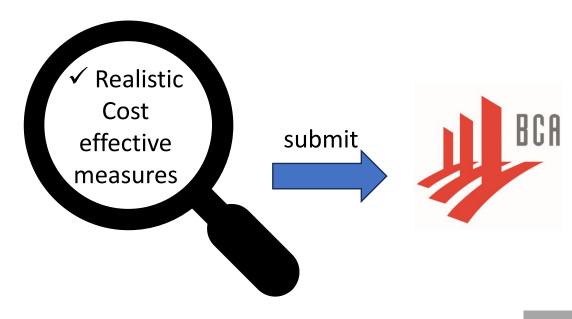
- Technical evaluation of building cooling systems and other high energy consuming systems, where relevant.
- Measurement and verification of operating system efficiency and performance.
- Observations on control settings, operating schedules and maintenance conditions to identify specific opportunities for energy efficiency improvements.

End-Use Breakdown

Analyze consumption by system: HVAC (~70%), Lighting (~10%), Receptacle Loads (~10%), and other uses.

Breakdown of Energy Consumption by End-Use (System Level)




- ✓ Feasibility assessment of EUI reduction
- ✓ Description of each recommended measures
- ✓ Expected energy savings and EUI reduction
- ✓ Implementation costs

- ✓ Simple payback period for each measure
- ✓ Implementation timeline

- Feasibility study of energy efficiency measures identified.
- Cost and benefits analysis which include energy savings, implementation costs etc.
- Recommended measures to achieve the minimum required EUI reduction.

S/No.	List of Potential Measures	Building	Energy Savi	ng Potential	Potential Cost	Selection (Y/N)	Remarks/ Reasons (if not
		System/	(High/Med	dium/Low)	(High/ Medium/		implementing)
		Initiative	System Level	Building Level	Low)		
1	Conduct comprehensive maintenance including tube	Chiller	Low	Low	Low	Yes	
	cleaning and refrigerant charge optimisation	system					
2	Chiller optimisation including upgrading of control	Chiller	High	High	Medium	Yes	
	system	system					
3	Installation of smaller capacity chiller	Chiller	High	High	High	Yes	
		system					
4	AHUs system optimisation	AHUs	Medium	Medium	Medium	Yes	
5	Replacement with EC fans	AHUs	High	Medium	Medium	No	To be considered at later stage as existing systems are within service life.
6	Regular cleaning schedule and preventive maintenance programme for cooling coils along with filter differential pressure monitoring	AHUs	Low	Low	Low	Yes	
7	Replacement of existing fixtures with LED panels	Lighting system	Low	Low	Low	Yes	
8	Install occupancy sensors in less frequently accessed areas	Lighting system	Low	Low	Low	Yes	
9	Use time scheduling for open office areas, with manual override capability	Lighting system	Low	Low	Low	Yes	
10	Integrate lighting control with the building management system upgrade	Lighting system	Medium	Low	Medium	No	Incompatible existing lighting circuits/systems

S/No.	List of Potential Measures	Building System/ Initiative		Energy Saving Potential (High/Medium/Low)		Selection (Y/N)	Remarks
		miliative	System Level	Building Level	High/ Medium/ Low)		
11	Upgrade with demand-controlled ventilation with CO sensors to monitor the air quality and modulate the fan speeds of the supply and exhaust fans based on CO level	Carpark ventilation System	Medium	Low	Medium	No	Limited BMS integration capability for carpark systems
12	Change operational scheduling by aligning ventilation with peak usage patterns, to reduce ventilation during low occupancy period	Carpark ventilation System	Medium	Low	Low	Yes	
13	Adjustment of pressure control by optimising the AHU settings for proper pressurisation and balance the air distribution.	AHUs in relation to air leakage	Medium	Low	Low	Yes	
14	Install automated self-closing doors to minimise excessive air leakage	Door provision	Medium	Low	Low	Yes	
15	System Optimisation by implementing demand-based temperature control.	Centralised hot water system	High	Medium	Medium	No	Plan for boiler replacement
16	Install VSD for circulation pumps and demand-based circulation control	Centralised hot water system	High	Medium	Medium	No	Plan for boiler replacement
17	Improve on existing hot water system insulation	Centralised hot water system	Low	Low	Low	No	Plan for boiler replacement
18	Replace with high efficiency heat pump	Centralised hot water system	High	High	High	Yes	
19	Tap on heat recovery from chiller condensers	Centralised hot water system	Medium	Medium	Medium	Yes	Complement boile replacement

Summar	Summary List of Potential Measures and Selection (example)						
S/No.	List of Potential Measures	Building System/	Energy Saving Potential		Potential Cost	Selection (Y/N)	Remarks
		Initiative	(High/Med	dium/Low)	(High/		
			System Level	Building Level	Medium/ Low)		
20	Energy performance requirements in lease	Tenant partnership	NA	Medium	Low	Yes	Limit to new
	agreements	programme					tenants or at lease
							renewal stage
21	Guidelines for fit out works to required energy	Tenant partnership	NA	Medium	Low	Yes	Limit to new
	efficient equipment	programme					tenants or at lease
							renewal stage
22	Cost-sharing mechanism for energy efficiency	Tenant partnership	NA	High	Medium	Yes	Subject to tenants'
	improvements	programme					agreement to terms
							like energy data
							sharing

To provide the basis on how the energy saving potential and implementation cost are classified as High, Medium, or Low. For example,

Energy Saving Po	tential (example)	Potential Implementation Cost
System Level	Building Level	(example)
High: > 20% Medium: 5% to 20% Low: <5 %	High: > 1% Medium: 0.5% to 1% Low: <0.5 %	High: > \$1 million Medium: \$300,000 to \$1 million Low: < \$ 300,000

Overview MEI Regime Methodology

Energy Audit

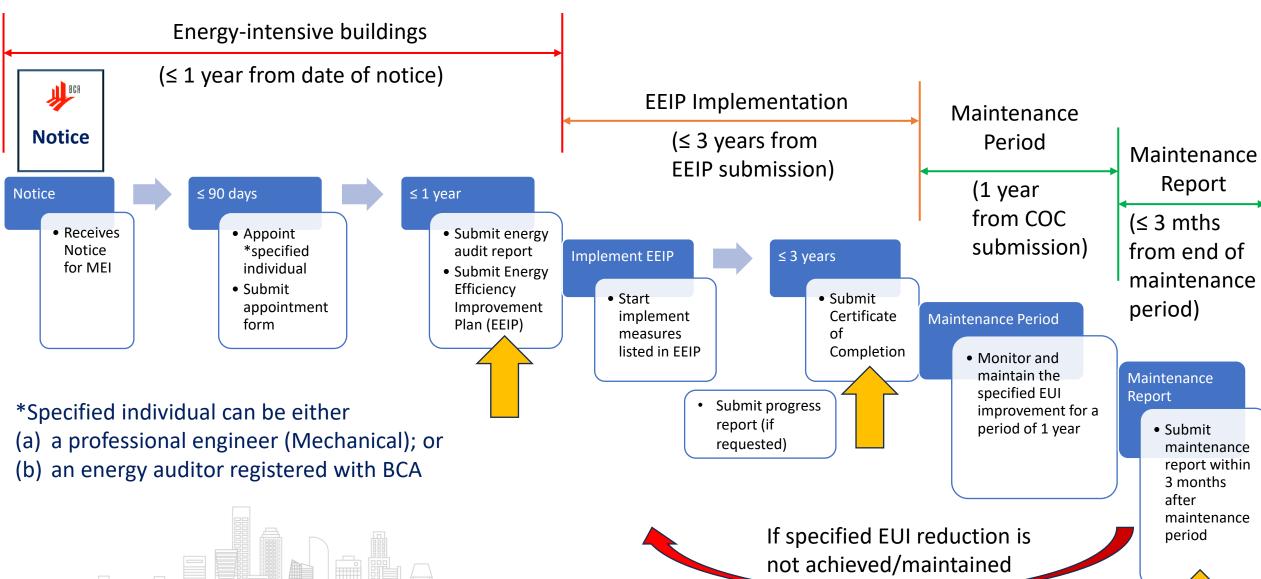
Submission Procedure

FAQ

			Cost and Simple Payback	Period	Implementation	ı Plan
S/No.	Proposed Energy Improvement Measures (Example)	Building Systems/	Estimated	Simple Payback	c	Estimated End Date
		Initiatives	Implementation Cost (\$)	Period (Year)	Start Date	(where applicable)
Energy Red	uction Recommendation					•
1	Conduct comprehensive maintenance including tube cleaning and	Chiller system			15 Oct 2026	15 Dec 2026
	refrigerant charge optimisation					
2	Chiller optimisation including upgrading of control system	Chiller system			1 Mar 2027	30 Jul 2027
3	AHUs system optimisation	AHUs			1 Mar 2027	30 Jul 2027
4	Regular cleaning schedule and preventive maintenance programme for	AHUs			1 Jan 2027	Ongoing
	cooling coils along with filter differential pressure monitoring					
5	Install occupancy sensors in less frequently assessed areas	Lighting system			1 Jan 2027	Ongoing
6	Use time scheduling for open office areas, with manual override	Lighting system			1 Jan 2027	Ongoing
	capability					
7	Change operational scheduling by aligning ventilation with peak usage	Carpark ventilation			15 Feb 2027	Ongoing
	patterns, to reduce ventilation during low occupancy period	system				
8	Adjustment of pressure control by optimising the AHU settings for	AHUs in relation to air			15 Mar 2027	Ongoing
	proper pressurisation and balance the air distribution.	leakage				
9	Install automated self-closing doors to minimise excess air leakage	Door provision in relation			1 Apr 2027	31 Aug 2027
		to air leakage				
10	Energy performance requirements in lease agreements	Tenant Partnership			1 Jun 2027	Ongoing
		Programme				Remarks : For new lease
11	Guidelines for fit out works to required energy efficient equipment	Tenant Partnership			1 Jun 2027	Ongoing
		Programme				Remarks : Apply to new leases and lease
						renewals
12	Protocol for air-conditioning usage during off-peak hours	Tenant Partnership			1 Mar 2027	Ongoing
	graduate graduate graduate	Programme				
13	Cost-sharing mechanism for energy efficiency improvements	Tenant Partnership			1 Mar 2027	Ongoing
	,	Programme				
14	Tenant energy management programme	Tenant Partnership			1 Mar 2027	Ongoing
	To take one by management programme	Programme				0.180.1.8
15	Installation of smaller capacity chiller	Chiller system			1 Sep 2027	30 Mar 2027
16	Replacement of all existing fixtures with LED panels	Lighting system			30 Oct 2027	31 Dec 2027
17	Replace with high efficiency heat pump	Centralised hot water			30 Mar 2027	30 Oct 2027
		system				
Remarks:		1-1	∑ kWh	ΣkWh	ΣkWh	

(1) Determine the EUI baseline

Overview


Energy Use I	ntensity (EUI) (kV	Vh/m²/year)	Baseline: Average EUI over three years
2022	2023	2024	TIII - TTIII /2 - 400 Wh /m² /voor
402	403	395	$EUI_{baseline} = \sum EUI_{i}/3 = 400 \text{ kWh/m}^{2}/\text{year}$

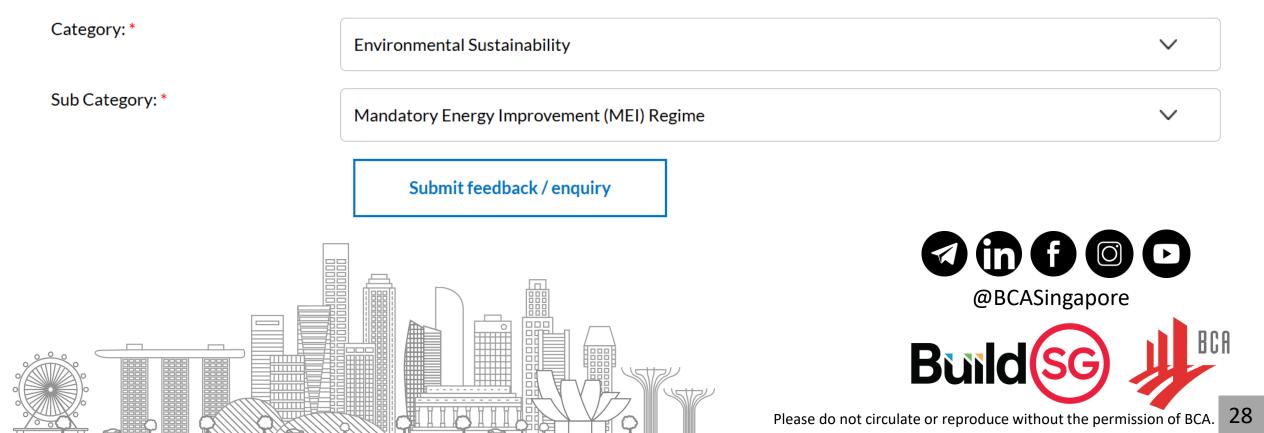
(2) Determine the percentage reduction in energy use intensity after implementation of proposed measures under the Energy Efficiency Improvement Plan

Total Expected Energy Savings after implementing EEIP (kWh/year)	Assume: 1,125,000 kWh/year
Energy Use Intensity (EUI) reduction (kWh/m²/year)	Assume : Building's Gross Floor Areas (GFA) of 25,000 m ² Expected EUI reduction = $\frac{\text{Total expected energy savings}}{\text{GFA}}$ $= \frac{1,125,000 \text{kWh/yr}}{25,000 \text{m}^2} = 45 \text{kWh/m}^2/\text{yr}$
	% EUI reduction = $\frac{\text{Expected EUI reduction}}{\text{EUI}_{baseline}}$ $= \frac{45}{400} = 11.25\% > 10\% \text{ ok}$

(3) Estimate the EUI reduction over 3-year period as the energy improvement measures are progressively completed based on EEIP and implementation plan.

Expected Reduction in Energy Use Intensity (EUI) by Phases (example)						
De ⁻	tails	Year 0	Year 1	Year 2	Year 3	
Expected Building's EUI		400	385	365	355	
Expected EUI	By phase over 3- year period	0	15	20	10	
reduction	Cumulative	0	15	35	45	
	eduction llative)	0	3.75%	8.75%	11.25% >10%	

- Encourage building owners to improve on their buildings' energy performance and to strive for deeper carbon emission reduction
- Co-funding support will help lowering the upfront cost of EE retrofits and improve on ROI. The funding quantum is based on carbon emission reduction and Green Mark standard attained.


Applicable to privately-owned commercial, institutional, light industrial and residential buildings (common areas and services) under the Buildings Sector and with GFA ≥ 5000 m²

Qualifying Criteria	Funding Factor	Funding Cap
Green Mark Platinum	\$25/tCO2e	\$600,000 or up to 50% of qualifying cost, whichever is lower
Green Mark Super Low Energy (SLE)	\$35/tCO2e	\$900,000 or up to 50% of qualifying cost, whichever is lower
Green Mark Zero Energy (ZE)	\$45/tCO2e	\$1,200,000 or up to 50% of qualifying cost, whichever is lower

Thank you!

Please submit query at https://www2.bca.gov.sg/feedback/ if you need any further clarification.

- 1. "Category" = "Environmental Sustainability"
- 2. "Sub Category" = "Mandatory Energy Improvement (MEI) Regime"

