

AGS CHECKING PROCEDURE & COMMON MISTAKE IN AGS

24 April 2018

Geological & Underground Projects Department (GUPD)

We shape a safe, high quality, sustainable and friendly built environment.

Content

- Types of AGS Errors
- AGS Checking procedures
- Guidelines on naming of submission files for SI works
- Examples of Common Mistakes

- Data Format Error (Step 1)
- Data Incompleteness (Step 2, Step 3)
- Data Integrity Error (Step 4)

AGS Checking Procedure

No	Process of AGS checking	Remark
1	Compliance with AGS Format - 25 Rules (Pg A2/1 to A2/5)	By software (AGS checker log) (whether AGS files followed the rules)
2	Data completeness Groups (Pg A1/2 to A1/29)	Visual inspection of data from PDF report and relevant Groups in electronic file AGS. (AGS checker log)
3	Data completeness Headings (Pg A1/2 to A1/29)	Visual inspection of data from PDF report and relevant Headings in electronic file AGS. (AGS checker log)
4	Data validation (Pg A3/1 to A3/38)	By Software (Data type, Units, Lookup Lists) (AGS Data Import log, Lookup List Check Tool log)

Guidelines on naming of submission files for SI works

Building and Construction Authority

We shape a safe, high quality, sustainable and friendly built environment

Our Ref BCA SGO 003/2012

Building Engineering Division (#05-00) Fax : 6325 7482 DID : 6325 7571 E-mail : yang_kin_seng@boa.gov.sg

21 January 2013

See Distribution List

Dear Sir/Madam

IMPLEMENTATION OF SITE INVESTIGATION DATA IN STANDARDISED ELECTRONIC FORMAT

Presently, it is not common for site investigation (SI) data to be prepared and submitted in electronic format. The BCA's Singapore Geological Office (SGO) has therefore initiated and prepared a standardised electronic format which is based on the needs and practices in Singapore. This is to enable and facilitate the ease and seamless transfer, interchange, storage, retrieval, sharing and use of SI data in a standardised electronic format. Last year, BCA held a series of dialogue sessions with government agencies and site investigation firms on the standardization of SI data in electronic format. SGO is pleased to inform the industry that the '*Guidelines on Electronic Transfer for Site Investigation* Data' which covers Singapore first standardised electronic file format protocol AGS(SG) for the geological, geotechnical, geo-environmental, geophysical field and laboratory testing data is ready and can be downloaded from the BCA website at the following link: http://www.bca.gov.sg/StructuralPlan/others/Electronic transfer SI data.pdf.

2 We wish to inform the industry that the submission of SI data in the AGS(SG) electronic format will be a requirement with effective from 1st July 2013 for all new projects. An example on the labelling requirements of the electronic files for the Site Investigation report and data file in AGS(SG) format is shown in Annex A.

3 I would appreciate it if you could disseminate the contents of this letter to your members.

Yours faithfully

YANG KIN SENG DIRECTOR BUILDING ENGINEERING DIVISION for COMMISSIONER OF BUILDING CONTROL BUILDING AND CONSTRUCTION AUTHORITY

ANNEX A

An example of a submission format for Site Investigation (SI) report:

a) Site Investigation report (pdf format)

Example of labelling of SI report file: SGO_SI_XXXX.pdf

b) <u>Site Investigation data in AGS(SG) format</u> (to be appended as an Annex of SI report)

Note: All SI reports & related documents should be labelled as 'SGO_SI' in the prefix and XXXXX refer to project name or project site location.

Example of AGS Checker log file

Example of completed files of SI reports (PDF, AGS, TXT)

Name	Date modified	Туре	Size 📕
SGO_SI_NO. 66 WOO MON CHEW ROAD	29/1/2018 2:34 PM	AGS File	15 KB
🗾 SGO_SI_NO. 66 WOO MON CHEW ROAD	29/1/2018 3:08 PM	Adobe Acrobat D	2,473 KB
sgo_si_no.66 woo mon chew road_ags checker log	29/1/2018 2:34 PM	Text Document	1 KB

- SI firm shall check the AGS files before submission to QP/BCA, by generating a log file of AGS Checker_Projectlocation.txt.
- Output from checker-log files are require to be submitted to QP/BCA. Currently, about 20 % of checker-log files submitted.

Examples of Common Mistakes

"**CNMT" "*HOLE_ID","*SAMP_TOP","*SAMP_REF","*SAMP_TYPE","*SPEC_REF","*SP EC_DPTH",[*CNMT_TYPE","*CNMT_TTYP","*CNMT_RESL","*CNMT_UNIT" "<UNITS>","m","","","","","","","","","" "BH1","2","U1","U","1","2","PHS","SOLID","6.9","" "BH1","2","U1","U","1","2","CL","SOLID","6.9","" "BH1","2","U1","U","1","2","SO3","SOLID","6.01","%"

Errors corrected

Example 1:

"**CNMT" "*HOLE_ID","*SAMP_TOP","*SAMP_REF","*SAMP_TYPE","*SPEC_REF","*SP EC_DPTH","*CNMT_TYPE","*CNMT_TTYP","*CNMT_RESL","*CNMT_UNIT" "<UNITS>","m","","","","","","","","" "BH1","2","U1","U","1","2","PH"]"SOLID","6.9","" "BH1","2","U1","U","1","2","CL","SOLID","6.9","" "BH1","2","U1","U","1","2","SO3","SOLID","<0.04","g/L" "BH2","2","U1","U","1","2","OMS","SOLID","<0.1","%"

Error in CNMT_TYPE Heading

Example 2: Error in PREF_TDEP, POBS_TIME Heading

"**POBS" "*HOLE_ID","*PREF_TDEP","*POBS_DATE" "*POBS_TIME","*POBS_DEP","*PO BS_HEAD" "<UNITS>","m","dd/mm/yyyy","hhmmss","m","m" "BH11 "11.6m"," 16/06/2015" "30/12/1899"," 5.2","99.96" "BH11 ","11.6m","11/08/2015 ',"30/12/1899" "5","100.01" "BH14 ","11.6m" ,"13/06/2015 ","30/12/1899" ,"5","98.91"

Errors corrected

"**POBS" "*HOLE_ID", "*PREF_TDEP", "*POBS_DATE" "*POBS_TIME", "*POBS_DEP", "*PO BS_HEAD" "<UNITS>", "m", "dd/mm/yyyy", "hhmmss", "m", "m" "BH1", "11.6", "16/06/2015", "083000", "5.2", "99.96" "BH11", "11.6", "11/08/2015", "083000", "5", "100.01" "BH14", "11.6", "13/06/2015", "083000", "5", "98.91"

"BH-2","W', "21406.876 "," 39871.620 "," 125.900 ,"","33.500","29-12-2015","KK","","","","","21406.876","39871.620","125.900","02-01-

"BH-1"."W' "","","","","28.500","22-12-2015","KK","Water standpipe (9-metre long) installed on 24 Dec

"BH-1","W", 21514.163 "," 39808.946 "," 125.470 " "","28.500","22-12-2015","KK","Water standpipe (9-metre long) installed on 24 Dec

_LOCM","*HOLE_LOCA","*HOLE_CLST","*?HOLE_OFFS","*?HOLE_CNGE","*?HOLE_STAT","*FILE_FSET","*?HOLE_FREC"

"*HOLE BACD", "*HOLE CREW", "*HOLE ORNT", "*HOLE INCL", "*HOLE EXC", "*HOLE SHOR", "*HOLE STAB", "*HOLE DIML", "*HOLE DIMW", "*HOLE

"**HOLE" "*HOLE_ID","*HOLE_TYPE","*HOLE_NATE","*HOLE_NATN","*HOLE_GL","*?HOLE_CDL","*HOLE_FDEP","*HOLE_STAR","*HOLE_LOG","*HOLE_REM", "*HOLE_ETRV","*HOLE_NTRV","*HOLE_LTRV","*HOLE_LETT","*HOLE_LOCX","*HOLE_LOCY","*HOLE_LOCZ","*HOLE_ENDD",

Errors corrected

.....

"BH-2","W","","","","","33.500","29-12-2015","KK","","","","","","21406.876","39871.620","125.900","02-01-

"*HOLE_ETRV", "*HOLE_NTRV", "*HOLE_LTRV", "*HOLE_LETT", "*HOLE_LOCX", "*HOLE_LOCY", "*HOLE_LOCZ", "*HOLE_ENDD", "*HOLE BACD"."*HOLE CREW","*HOLE ORNT","*HOLE INCL","*HOLE EXC","*HOLE SHOR","*HOLE_STAB","*HOLE_DIML","*HOLE_DIMW","*HOLE LOCM","*HOLE LOCA","*HOLE CLST","*?HOLE OFFS","*?HOLE CNGE","*?HOLE STAT","*FILE FSET","*?HOLE FREC"

"**HOLE" "*HOLE ID","*HOLE TYPE","*HOLE NATE","*HOLE NATN","*HOLE GL","*HOLE CDL","*HOLE FDEP","*HOLE STAR","*HOLE LOG","*HOLE REM",

Example 3: Misplaced data of HOLE NATE, HOLE NATN, HOLE GL Heading

Example 4:

Inappropriate label for SAMP REF Heading

"**CLSS"

"*HOLE_ID","*SAMP_TOP","*SAMP_REF","*SAMP_TYPE","*SPEC_REF","*SPEC_DPTH","*CLSS_NMC","*CLSS_LL", "*CLSS PL", "*CLSS BDEN", "*CLSS DDEN", "*CLSS PD", "*CLSS 425", "*CLSS PREP", "*CLSS SLIM", "*CLSS LS", "* CLSS HVP", "*CLSS HVR", "*CLSS PPEN",

"*CLSS VNPK", "*CLSS VNRM", "*?CLSS REM", "*?FILE FSET"

"*CLSS VNPK", "*CLSS VNRM", "*?CLSS REM", "*?FILE FSET"

"BH-1","1.50","TW-1","TW","1","1.75","27","64","29","1.91","1.50","","","","","","

"<UNITS>","m","","","m","%","%","%","Mg/m3","Mg/m3","Mg/m3","%","%","%","kN/m2","kN/m2","kN/m2","kN/m2","k N/m2","",""

"*HOLE_ID","*SAMP_TOP","*SAMP_REF","*SAMP_TYPE","*SPEC_REF","*SPEC_DPTH","*CLSS_NMC","*CLSS_LL", "*CLSS PL", "*CLSS BDEN", "*CLSS DDEN", "*CLSS PD", "*CLSS 425", "*CLSS PREP", "*CLSS SLIM", "*CLSS LS", "*

"<UNITS>","m","","","m","%","%","%","%","Mg/m3","Mg/m3","Mg/m3","%","%","%","%","kN/m2","kN/m2","kN/m2","kN/m2","k

Errors corrected

CLSS HVP", "*CLSS HVR", "*CLSS PPEN",

"**CI SS"

N/m2","",""

Example 5:

Labeling of sample type in SAMP_TYPE Heading

"**ROCK" "*HOLE_ID","*SAMP_TOP',<mark>"*SAMP_REF","*SAMP_TYPE","*SPEC_REF"</mark>,"*SPEC_DPTH","*ROCK _PLSI","*ROCK_UCS" "<UNITS>","m" "" "" "" "M" "MN/m2","MN/m2" "BH101","36.5',"3","CR","" "36.5","2.68","" "BH101","36.5',"3","CR","" "36.7","","23.6"

Errors corrected

"**ROCK" "*HOLE_ID","*SAMP_TOP","*SAMP_REF","*SAMP_TYPE","*SPEC_REF","*SPEC_DPTH","*ROCK _PLSI","*ROCK_UCS" "<UNITS>","m","","","","m","MN/m2","MN/m2" "BH101","36.5" "CR3","C", "3","36.5","2.68","" "BH101","36.5" "CR3","C", "3","36.7","","23.6"

Common SAMP_TYPE

С	Core sample
Μ	Mazier type sample
Ρ	Piston sample
SPTLS	Standard penetration test liner sample
TW	Thin walled push in sample

Example 6:

Labeling of sample reference in SAMP_REF Heading for SAMP group and other lab test groups

- ▶ "**SAMP"
- "*HOLE_ID","*SAMP_TOP",'*SAMP_REF',"*SAMP_TYPE","*SAMP_BASE"
- "<UNITS>","m","","","m"
- "BH146","3.5"["1","TW","4.2"
- ▶ "BH146","6.5"<mark>"2",</mark>"TW","6.9"
- "**CLSS"
- "*HOLE_ID","*SAMP_TOP","*SAMP_REF" "*SAMP_TYPE" "*SPEC_REF","*SPEC_DPTH","*CLSS_S_NMC","*CLSS_LL","*CLSS_PL","*CLSS_BDEN","*CLSS_DDEN","*CLSS_PD"
- "<UNITS>","m","","","m","%","%","%","Mg/m3","Mg/m3",""
- **BH146**", "3.5", "1", "TW", "", "3.5", "53", "67", "31", "", "1.42"
- **BH146"**,"6.5"<mark>."2"</mark> "TW","" "6.5","82","78","32","","",""

			20							
L						(0)	()	z	z	BOREHOLE No.
		E		Ê	비비	j O	m) S	TSL 192	_₽	
		-	쮸범 빙흔		「二田	15	š.	50	55	
AT SUNGERWI	HOIMFOE BER O	E	I II I I I I I I I I I I I I I I I I I	É.	되말	토	Ë	ЙĒ	Ю Ш	LEASTING.
				Ë	AMF	AF S	ð	S	ßВ	
DATA & TESTS REPORTED		0			0	- E	E	5 L	LA	
ELSEWHERE			1.0.00.00	8				0	0	DESCRIPTION
DAILY WATER TABLE READING				_						Yellowish brown, reddish brown, dark grey, sandy CLAY with concrete fragments (Backfill)
DATE READING										
(m bgl)										
24/12/2008 2.80				-						
25/12/2008 2.10				<u>-</u>						
25/12/2008 2.60				2						
26/12/2008 1.90										
27/12/2008 2.00				-						
27/12/2008 3.20				-			3.00	FILL	BF	
$_{28(12(2008))}^{28(12(2008))} = 2.10$	• • • • • • • • • • • •	0/300			L D					Very coff grey dark grey bluich grey marine
28/12/2008 3.20					h [``	==1				CLAY with shell fragments (Kallang Formation)
29/12/2008 1.90				- 3.50						1 (N C=53%, p=1.42 Ma/m ³ , LL=67%,
29/12/2008 2.50				4	₽ XI					PL=31%, s _== 6 kPa)
30/12/2008 1.80				4.20	\square					
31/12/2008 1.70	↓	0/300		-						
		2006008		-						
				-						
				-						
	1	0/200	iiiii	6		LEE				
	T : : : : : : : : : :	0/300								
				6.50					Г	
					K	E=1				2 (<mark>1</mark> C=82%, LL=78%, PL=32%, s=7 kPa)
				6.90					╵┖	
		0.000		-						
	• • • • • • • • • • •	0/300		<u>-</u>						
				8		===				
				-						
		1 December 10 Pr		_		F=1				
	• • • • • • • • • • • •	0/300				E=1				
				9.50		F==				3 (LL=75%, PL=30%, p _=35 kPa, C _=0.77 kPa)
				10 3	IXI	EEd				renormana analassi analassi na sa
				10.20	Η	\vdash				

Example 6:

Labeling of sample reference in SAMP REF Heading

Errors corrected

- "**SAMP"
- "*HOLE_ID", "*SAMP_TOP", "*SAMP_REF", "*SAMP_TYPE", "*SAMP_BASE"

"<UNITS>","m","","","","m","%","%","%","Mg/m3","Mg/m3",""

"BH146","3.5",["]TW-1],"TW"^{"11},"3.5","53","67","31","","","1.42"

"BH146","6.5",<u>"TW-2</u>,"TW" <u>"2'</u>,"6.5","82","78","32","","",""

- "<UNITS>","m","","","m"
- "BH146","3.5" "TW-1" "TW","4.2"
- "BH146","6.5" "TW-2" "TW","6.9"

"**CI SS"

- "*HOLE_ID","*SAMP_TOP" "*SAMP_REF","*SAMP_TYPE","*SPEC_REF","*SPEC_DPTH","*CLS S NMC", "*CLSS LL", "*CLSS PL", "*CLSS BDEN", "*CLSS DDEN", "*CLSS PD"

"BH-1", "3.00", "SPT-1", "SPTLS", "3.45" "BH-1", "6.00", "SPT-2", "SPTLS", "6.45"

"BH-1","2.00","DS-2","D","2.45","" "BH-1","3.50","MZ-1","M","4.50","REC=86/100" "BH-1","6.50","MZ-2","M","7.50","REC=60/100"

"BH-1","1.00","DS-1","D","1.45",""

"<UNITS>","m","","","m",""

"**SAMP" "*HOLE_ID", "*SAMP_TOP", "*SAMP REF", "*SAMP TYPE", "*SAMP BASE", "*SAMP REM"

"BH-1","3.00","6","30","450","30","S","3","6","6","6","8","10","75","75","75","75","75","75","75","8PT-1" "BH-1","6.00","5","62","450","62","S","2","3","8","16","18","20","75","75","75","75","75","75","75","8PT-2"

"*ISPT PEN6", "*?ISPT REF"

"*ISPT_PEN2","*ISPT_PEN3","*ISPT_PEN4","*ISPT_PEN5",

"**ISPT" "*HOLE ID", "*ISPT TOP", "*ISPT SEAT", "*ISPT MAIN", "*ISPT NPEN", "*ISPT NVAL", "*ISPT TYPE", "*ISPT INC1", "*ISPT INC2", "*ISPT INC3", "*ISPT INC4", "*ISPT INC5", "*ISPT INC6", "*ISPT PEN1",

Example 7: Missing SPT samples in SAMP Group

LOCATION:		(N) / mm	THERING	DUCED VEL (m)	PTH (m)	PLE TYPE	ITU TEST	PHIC LOG	(MESS (m)	LOGICAL	S SOIL	BOREHOLE No. EASTING:
FIELD & LABORATORY DATA & TESTS REPORTED	SPT N VALUE	SPT	WEA	RE	DE	SAM	N	GRA	THIC	GEO	CLASS	REDUCED LEVEL:
ELSEWHERE	0 0 7 0 7 7 3 7 4 3 7 4		1,0,0,0,0,0				2-22		- 25 	U	0	DESCRIPTION
				-18.15	- DS-1 - 1. - 2 - 2. - 2. - 2.	.00	* * * * * * * * * * * *	****	2.45	S	M	Very Stiff, Whitish Grey mottled with Dark Brown and Red, SILT, With traces of fine grained sand. (Completely Weathered, Siltstone), [JURONG FORMATION]
		30/300		-20,70	- 2. - 3. - 3. - 4 MZ-1 - 4.	.50		****	2.55	S	м	Very Stiff to Hard, Light Grey stained with Dark Grey, SILT, With traces of fine grained sand and fine to medium gravels. (Completely Weathered, Siltstone), [JURONG FORMATION] MZ-1 (MC=28%, ρ_w =1.99 Mg/m ³ , ρ_w =2.76 Mg/m ³ , SAND=11% SILT=67% CLAY=22%, LL=42%, PL=28%, c' _{cu} =8 kPa, ϕ ' _{cu} =31°, p _c =1300 kPa, C _c =0.17 kPa, e ₀ =0.78)
		62/300			6 6 MZ-2 7. 8	.50	*****		2.50			Hard, Whitish Grey mottled with Dark Brown and Red. , SILT, With a few fine grained sand from 6.50m to 7.50m. (Completely Weathered, Siltstone)., [JURONG FORMATION] $MZ-2 (MC=20\%, \rho_w=2.10 \text{ Mg/m}^3, \rho_{a}=2.74 \text{ Mg/m}^3, \text{SAND}=13\% \text{ SILT}=71\% \text{ CLAY}=16\%, \text{LL}=38\%, \text{PL}=26\%, C_c=0.09 \text{ kPa}, e_0=0.55)$

Example 8:

SPT N values missing in ISPT NAVL Field for N=100

"**ISPT"

"*HOLE ID", "*ISPT TOP", "*ISPT SEAT", "*ISPT MAIN", "*ISPT NPEN", "*ISPT NVAL, "*ISPT REP", "*ISPT CAS", "*ISPT WA T","*ISPT TYPE","*ISPT REM","*ISPT INC1","*ISPT PEN1","*ISPT INC2","*ISPT PEN2","*ISPT INC3","*ISPT PEN3","*ISP T INC4","*ISPT PEN4",

"*ISPT INC5", "*ISPT PEN5", "*ISPT INC6", "*ISPT PEN6", "*?ISPT SWP"

"25.0","","","","",""

"BH1C5","105.000","25.0","100","170.0",",",'100 (25 for 60mm/55,45 for 35mm)","","","S","","25.0","60.0","","","","55.0","75.0","45.0"," "35.0","","","","",""

"BH1C5","108.000","25.0","100","150.0","1,"100 (25 for 60mm/69,31 for 15mm)","","","S","","25.0","60.0","","","","69.0","75.0","31.0"," "15.0","","","","",""

Errors corrected

"**ISPT"

"*HOLE ID","*ISPT TOP","*ISPT SEAT","*ISPT_MAIN","*ISPT_NPEN","*ISPT_NVAL","*ISPT_REP","*ISPT_CAS","*ISPT_WAT","*ISPT_TY PE","*ISPT REM","*ISPT INC1","*ISPT PEN1","*ISPT INC2","*ISPT PEN2","*ISPT INC3","*ISPT PEN3","*ISPT INC4","*ISPT PEN4", "*ISPT INC5", "*ISPT PEN5", "*ISPT INC6", "*ISPT PEN6", "*?ISPT SWP" "BH1C5", "102.000", "25.0", "100", "160.0" "100", "100 (25 for 60mm/63,37 for 25mm)", "", "S", "", "25.0", "60.0", "", "", "63.0", "75.0", "37.0", "25.0","","","","","","" "BH1C5", "105.000", "25.0", "100", "170.0" "100', "100 (25 for 60mm/55, 45 for 35mm)", "", "", "S", "", "25.0", "60.0", "", "", "55.0", "75.0", "45.0", "35.0","","","","",""

"BH1C5", "108.000", "25.0", "100", "150.0" "100', "100 (25 for 60mm/69,31 for 15mm)", "", "", "S", "", "25.0", "60.0", "", "", "69.0", "75.0", "31.0",

"15.0","","","","","",""

Example 8:

SPT N values missing in ISPT NAVL Field for N=100

"**ISPT"

"*HOLE ID", "*ISPT TOP", "*ISPT SEAT", "*ISPT MAIN", "*ISPT NPEN", "*ISPT NVAL, "*ISPT REP", "*ISPT CAS", "*ISPT WA T","*ISPT TYPE","*ISPT REM","*ISPT INC1","*ISPT PEN1","*ISPT INC2","*ISPT PEN2","*ISPT INC3","*ISPT PEN3","*ISP T INC4","*ISPT PEN4",

"*ISPT INC5", "*ISPT PEN5", "*ISPT INC6", "*ISPT PEN6", "*?ISPT SWP"

"25.0","","","","",""

"BH1C5","105.000","25.0","100","170.0",",",'100 (25 for 60mm/55,45 for 35mm)","","","S","","25.0","60.0","","","","55.0","75.0","45.0"," "35.0","","","","",""

"BH1C5","108.000","25.0","100","150.0","1,"100 (25 for 60mm/69,31 for 15mm)","","","S","","25.0","60.0","","","","69.0","75.0","31.0"," "15.0","","","","",""

Errors corrected

"**ISPT"

"*HOLE ID","*ISPT TOP","*ISPT SEAT","*ISPT_MAIN","*ISPT_NPEN","*ISPT_NVAL","*ISPT_REP","*ISPT_CAS","*ISPT_WAT","*ISPT_TY PE","*ISPT REM","*ISPT INC1","*ISPT PEN1","*ISPT INC2","*ISPT PEN2","*ISPT INC3","*ISPT PEN3","*ISPT INC4","*ISPT PEN4", "*ISPT INC5", "*ISPT PEN5", "*ISPT INC6", "*ISPT PEN6", "*?ISPT SWP" "BH1C5", "102.000", "25.0", "100", "160.0" "100", "100 (25 for 60mm/63,37 for 25mm)", "", "S", "", "25.0", "60.0", "", "", "63.0", "75.0", "37.0", "25.0","","","","","","" "BH1C5", "105.000", "25.0", "100", "170.0" "100', "100 (25 for 60mm/55, 45 for 35mm)", "", "", "S", "", "25.0", "60.0", "", "", "55.0", "75.0", "45.0", "35.0","","","","",""

"BH1C5", "108.000", "25.0", "100", "150.0" "100', "100 (25 for 60mm/69,31 for 15mm)", "", "", "S", "", "25.0", "60.0", "", "", "69.0", "75.0", "31.0",

"15.0","","","","","",""

LOCATION		v - 2			2		-				BOREHOLE No
Lookinok.		E	NG	02	e	뷥	8	(m)	AL	LION	BONEHOLE NO.
		N)/N	HERI	EL (m	TH (n	LE TY	HICL	NESS	PICA.	SOIL FICA	EASTING:
FIELD & LABORATORY	SPT N VALUE	SPT (VEAT	REC	DEP	SAMP	RAP	HICKI	SEOL	BS	NORTHING: REDUCED LEVEL:
ELSEWHERE	- 10 - 20 - 20 - 30 - 40 - 70 - 70 - 90	1.550	> v _i v _i v _i v				0	F	5	ರ	DESCRIPTION
] []			- - - - - - - - - - - - - - - - - - -	M M	* * * * * * * * * * * * * * * * * * * *				Very Dense, Pale Olive (5Y 6/3) mottled with Grayish Brown (2.5Y 5/2), Silty SAND, Sand is subangular coarse grained gravel., [OLD ALLUVIUM] (continued)

Example 9:

- (1) Simplified Geology code of GEOL_GEOL according to TR26:2010 (Spring) for geotechnical logs
- (2) Lithology code (soil and rock material) of GEOL_GEOL2; and
- (3) Stratigraphic code of GEOL_GEOL3 comply with Guidelines for Electronic Transfer of Site Investigation Data (2013)

"**GEOL" "*HOLE_ID","*GEOL_TOP","*GEOL_BASE","*GEOL_DESC","*GEOL_LEG",<mark>"*GEOL_GEOL</mark>', "*GEOL_GEO2",<mark>"*?GEOL_GEO3"</mark>

"<UNITS>","m","^m","","","","","",""

"BH-21E23","0.00","2.00","Very soft, greenish grey, fine to coarse sandy CLAY with shell fragments. (KALLANG FORMATION)","203","M","CS","Km"

"BH-21E23","2.00","3.00","Medium stiff to stiff, light grey mottled yellowish brown, fine to coarse sandy SILT (Completely weathered tuff, JURONG FORMATION)","303" "S',"MS" "J"

"BH-21E23","5.10","8.10","Moderately strong to strong, dark grey, moderately weathered SILTSTONE with thickly bedded to thinly laminated with light grey tuff and mudstone. Bedding plane~50°. Two (2) sets of prominent joints: J1=40° and J2=60°~70°, which are very close to closely spaced (JURONG FORMATION). ","802", [S]", [J]"

Example 10:

- (1) Simplified Geology code of GEOL_GEOL according to TR26:2010 (Spring) for geotechnical logs
- (2) Lithology code (soil and rock material) of GEOL_GEOL2; and
- (3) Stratigraphic code of GEOL_GEOL3 comply with Guidelines for Electronic Transfer of Site Investigation Data (2013)

Errors corrected

"**GEOL"

"*HOLE_ID","*GEOL_TOP"."*GEOL_BASE","*GEOL_DESC","*GEOL_LEG",<mark>"*GEOL_GEOL"</mark>, "*GEOL_GEO2",<mark>!*?GEOL_GEO3"</mark>

"<UNITS>","m","m","","","","","","",""

"BH-21E23","0.00","2.00","Very soft, greenish grey, fine to coarse sandy CLAY with shell fragments. (KALLANG FORMATION)","203","M","CS","Km"

```
"BH-21E23", "2.00", "3.00", "Medium stiff to stiff, light grey mottled yellowish brown, fine to coarse sandy SILT (Completely weathered tuff, JURONG FORMATION)", "303", S(V)" "MS", Jac"
```

"BH-21E23","5.10","8.10","Moderately strong to strong, dark grey, moderately weathered SILTSTONE with thickly bedded to thinly laminated with light grey tuff and mudstone. Bedding plane~50°. Two (2) sets of prominent joints: J1=40° and J2=60°~70°, which are very close to closely spaced (JURONG FORMATION). ","802" "S(III)","SI", Jac"

Based on Euro Code, mass weathering grade will be (0 to 5)

Example 11: Errors in GEOL_GEOL Heading

"**GEOL"

"*HOLE_ID","*GEOL_TOP","*GEOL_BASE","*GEOL_DESC","*GEOL_LEG

"<UNITS>","m","m","","","",""

"BH18","15","18","Dense Reddish brown spotted pink Slightly gravelly slightly SIND (Dinstinctly weathered-OLD ALLUVIUM)","403","O(C)", SM" "BH18","18","27","Dense Light gray Slightly Silty fine to medium SAND (Dinstinctly weathered-OLD ALLUVIUM)","403","O(C)","SM" "BH18","27","30","Hard Light reddish orange motted light gray Slightly fine Sandy SILT (Partially weathered-OLD ALLUVIUM)","303","O(B)","MS" "BH18","30","36.25","Hard Light gray motted brown Slightly fine Sandy SILT (Unweathered-OLD ALLUVIUM)","303","O(A)","MS"

Errors corrected

"**GEOL"

"*HOLE_ID","*GEOL_TOP","*GEOL_BASE","*GEOL_DESC","*GEOL_LEG',"*GEOL_GEOL" "*GEOL_GEO2"

"<UNITS>","m","m","","","",""

"BH18","15","18","Dense Reddish brown spotted pink Slightly gravelly slightly Silty SAND (Dinstinctly weathered-OLD ALLUVIUM)","403","O(C)","SM" "BH18","18","27","Dense Light gray Slightly Silty fine to medium SAND (Dinstinctly weathered-OLD ALLUVIUM)","403","O(C)", SM" "BH18","27","30","Hard Light reddish orange motted light gray Slightly fine Sandy SILT (Partially weathered-OLD ALLUVIUM)","303","O(B)","MS" "BH18","30","36.25","Hard Light gray motted brown Slightly fine Sandy SILT (Unweathered-OLD ALLUVIUM)","303","O(A)","MS"

Example 12: Errors in GEOL_LEG, GEOL_GEOL, GEOL_GEO2 Heading

Errors corrected

"**GEOL" "*HOLE_ID","*GEOL_TOP","*GEOL_BASE","*GEOL_DESC","*GEOL_LEG","*GEOL_GEOL","*GEOL_GEO2" "*GEOL_STAT","* FILE_FSET" "<UNITS>","m","m","","","","","","","" "BH 01","0.1","Grey, CONCRETE", (104","","CON",",","" "BH 01","0.2","Dark grey, ASPHAL1","103","","AS",",","" "BH 01","0.6","2.5","Stiff to very stiff, brown and yellowish brown, sandy SILT with hard cores and debris (Kallang Formation)" "303", "F1", "MS" "","" "BH 01","2.5","7", "Very soft to soft, dark brown, PEATY CLAY with traces of sand and decomposed wood (Kallang Formation)" "230", "E", "CPt" "","" Example 13:

Permeability data not in correct format

"**IPRM" "*HOLE_ID","*IPRM_TOP","*IPRM_BASE","*IPRM_STG","*IPRM_TYPE'<mark>,"*IPRM_IPRM'</mark>,"*IPRM_R EM"

"<UNITS>","m","m","","","m/s","" "BH101","45","48","1","PKT'<mark>,"2.74E-08"</mark>,"PKT"

Errors corrected

"**IPRM" "*HOLE_ID","*IPRM_TOP","*IPRM_BASE","*IPRM_STG","*IPRM_TYPE","*IPRM_IPRM"""*IPRM_R EM"

"<UNITS>","m","m","","m/s","" "BH101","45","48","1","PKT", 0.000000274',"PKT"

LOCATION:		шш	RING	(L)	(m)	YPE	LOG	(m)	ICAL	IL ATION	BOREHOLE No. BH101
FIELD & LABORATORY DATA & TESTS REPORTED	SPT N VALUE	SPT (N) /	WEATHEI GRAD	REDUC LEVEL	DEPTH	SAMPLE T	GRAPHIC	THICKNES	GEOLOG	BS SO CLASSIFIC	EASTING: NORTHING: REDUCED LEVEL: 112.15 m
ELSEWHERE				71.65	CR-6		3 × 6 7 × 6	20	0 5(1)	SA	DESCRIPTION
				70.65	40.50 - - CR-7			1.0	0 S(III)	SA	Moderately strong, bedded, reddish brown, light greenish grey, fine to coarse grained SANDSTONE, moderately weathered, joint 30°,rough,undulating
				69.65	41.50 42 CR-8			1.0	0 <mark>S(II</mark>)	SA	Moderately strong, reddish brown, light greenish grey, fine to coarse grained SANDSTONE interbedded with Siltstone (41.8m-42.5m), slightly weathered, joint 45°,closely spaced
				68.65	- - - CR-9 - 43.50			1.0	0 S(II)	SA	Moderately strong, bedded, reddish brown, light greenish grey, fine to coarse grained SANDSTONE interbedded with Siltstone (43.20-43.50m), slightly weathered, joint 30°,
				67.65	44 44 CR-10			•• •• 1.0	0 S(IV	SI	Moderately weak, bedded, purplish brown, light greenish grey, SILTSTONE (Jurong Formation), highly weathered, highly fracture
PKT1 45.00-48.00 m k = 2.74E-8 m/s				66.65	44.50 CR-11	4		1.0	0 S(IV	SA	Moderately weak,bedded, purplish brown, light greenish grey, fine to coarse grained SANDSTONE, highly weathered,highly fracture

- Example 14:
- Weathering grade is not correctly presented
- (two weathering grades described within each drill core interval)

"**WETH"

"*HOLE_ID","*WETH_TOP","*WETH_BASE","*WETH_GRAD","*WETH_REM"

"<UNITS>","m","m","",""

"BH-21E23","2.00","3.00","V","Completely Weathered"

"BH-21E23", "3.00", "5.10", "V", "Completely Weathered"

"BH-21E23", "5.10", "8.10", "III to II", "Moderately to Slightly Weathered"

"**GEOL"

"*HOLE_ID","*GEOL_TOP","*GEOL_BASE","*GEOL_DESC","*GEOL_LEG","*GEOL_GEOL","*GEOL_G EO2","*?GEOL_GEO3"

"<UNITS>","m",""m","","","","",""

"BH-21E23","2.00","3.00","Medium stiff to stiff, light grey mottled yellowish brown, fine to coarse sandy SILT with traces of fine gravels (Completely weathered tuff, JURONG FORMATION).","303","S","MS","J" "BH-21E23","3.00","5.10","Hard, dark grey, fine to coarse sandy SILT (Completely weathered tuff, JURONG FORMATION).","301","S","M","J"

"BH-21E23","5.10","8.10","Moderately strong to strong, dark grey, SILTSTONE, **moderately to slightly weathered** with thickly bedded to thinly laminated with light grey tuff and mudstone. Bedding plane~50°.

Two (2) sets of prominent joints (J1=40° and J2=60°~70°) are very close to closely spaced (JURONG FORMATION).","802","S","SI","J"

Example 14: Weathering grade is not correctly presented

(two weathering grades described within each drill core interval)

Errors corrected

"**WETH"

"*HOLE_ID","*WETH_TOP","*WETH_BASE","*WETH_GRAD","*WETH_REM"

"<UNITS>","m","m","",""

"BH-21E23","2.00","3.00","V","Completely Weathered"

"BH-21E23", "3.00", "5.10", "V", "Completely Weathered"

"BH-21E23", "5.10", "7.10", "III", "Moderately Weathered"

"BH-21E23", "7.10", "8.10", "II", "Slightly Weathered"

"**GEOL"

"*HOLE_ID","*GEOL_TOP","*GEOL_BASE","*GEOL_DESC","*GEOL_LEG","*GEOL_GEOL","*GEOL_G EO2","*?GEOL_GEO3"

"<UNITS>","m",""m","","","","",""

"BH-21E23","2.00","3.00","Medium stiff to stiff, light grey mottled yellowish brown, fine to coarse sandy SILT with traces of fine gravels (Completely weathered tuff, JURONG FORMATION).","303","S(V)","MS", "Jac"

"BH-21E23","3.00","5.10","Hard, dark grey, fine to coarse sandy SILT (Completely weathered tuff, JURONG FORMATION).","301","S(V)","M","Jac"

"BH-21E23","5.10","7.10","Moderately strong to strong, dark grey, SILTSTONE, moderately weathered with thickly bedded to thinly laminated with light grey tuff and mudstone. Bedding plane~50°. Two (2) sets of prominent joints (J1=40° and J2=60°~70°) are very close to closely spaced (JURONG FORMATION).","802","S(III)","SI","Jac"

"BH-21E23", "7.10", "8.10", "Moderately strong to strong, dark grey, SILTSTONE, slightly weathered with thickly bedded to thinly laminated with light grey tuff and mudstone. Bedding plane~50°. Two (2) sets of prominent joints (J1=40° and J2=60°~70°) are very close to closely spaced (JURONG FORMATION).", "802", "S(II)", "SI", "Jac"

Example 15:

Co-ordinate and Elevation of boreholes to include in AGS. HOLE FREC also to be included.

"**HOLE"

"*HOLE_ID","*HOLE_TYPE","*HOLE_NATE","*HOLE_NATN","*HOLE_GL","*?HOLE_CDL","*HOLE_FD EP","*HOLE STAR","*HOLE LOG","*HOLE REM","*HOLE ETRV","*HOLE NTRV","*HOLE LTRV","*H OLE LETT", "*HOLE LOCX", "*HOLE LOCY", "*HOLE LOCZ", "*HOLE ENDD",

"*HOLE_BACD", "*HOLE_CREW", "*HOLE_ORNT", "*HOLE_INCL", "*HOLE_EXC", "*HOLE_SHOR", "*HOLE_ E_STAB","*HOLE_DIML","*HOLE_DIMW","*HOLE_LOCM","*HOLE_LOCA","*HOLE_CLST","*?HOLE_O FFS", "*?HOLE CNGE", "*?HOLE STAT", "*FILE FSET", "*?HOLE FREC"

"<UNITS>","","m","m","m","m","m","dd/mm/yyyy","","","m","m","m","m","m","m","dd/mm/yyyy

"BH1","RO","","","","","27.270","27/04/2013","","","","","","","","","","","29/04/2013","29/04/2013","T

PROJ ID/HOLE ID

Example 16:

Consolidation test data to be presented in AGS

The suggested the consolidation test data of each sample are mentioned in red box and point with black arrow.

"**CONS" "**CONS_INCE_ID", "*SAMP_TOP", "*SAMP_REF", "*SAMP_TYPE", [*SPEC_REF", *SPEC_DPTH", [*CONS_INCN"] **CONS_INCF", *CONS_INCE", *CONS_INCE", *CONS_INCV", **CONS_INSC", **CONS_INSC", **CONS_INCV", **CONS_INSC", **CONS_INCV", **CONS_INSC", **CONS_INCV", **CONS_INSC", **CONS_INSC', **CONS_IN Initial Conditions Elnal Conditions Molsture Content, w. (%) : 14.8 Moisture Content, Wr (%) : 14.1 Bulk Dansity, p (Mg/m3) : 2.10 Bulk Density, p. (Mg/m³) : 2.20 Dry Density, Pd (Mg/m3) : 1.83 Dry Density, par (Mg/m3) : 91 Vold Ratio, e.: 0.451 Void Ratio, #: 0.874 Deg. of Satutation, So (%) : 87 Deg. of Satutation, Sr (%) : 100 Room Temperature (°C): 25 Settlement (mm) : 1.068 Temp. Correction Factor : 8.89 Pre-Consolidation Pres, P. (kPa): 110 Compression Index. C. 0.06 Notes Inc. Load Settlement Machine Vold C, 100 C, my No. Reading Cal Corr. Ratio 20°C (kPa) (mm) (mm) (8) (m²/yr) (nim) (m²/yr) (m²/MN) 1 25 0.104 0.012 0.444 1.998 22.101 19.670 0.208 2 60 0.156 0.020 0.440 1.872 23.415 20.839 0.105 3 100 0.304 0.032 0.429 4.945 8.774 7.809 0.149 4 200 0.454 0.060 0.418 2.475 17.264 15.365 0.078 Б 400 0.692 0.096 0.401 8.767 6.200 5.518 0.061 6 800 0.040 0.144 0.383 1.586 25.830 22.989 0.025 7 1800 1.198 0.208 0.364 2.717 14.690 13.074 0.021 800 1.190 0.144 0.365 0.000

Example 17:Triaxial test data to be included in AGS according to the sample tested

"**TRIX"

"*HOLE_ID","*SAMP_TOP","*SAMP_REF","*SAMP_TYPE",'<mark>*SPEC_REF"</mark>,"*SPEC_DPTH","<mark>*TRIX_TESN</mark>',"*TRIX_SDIA","*TRIX_MC","*TRIX_CELL","*TR IX_DEVF","*TRIX_SLEN","*TRIX_BDEN","*TRIX_DDEN","*TRIX_PWPF","*TRIX_PWPI","*?TRIX_CU","*TRIX_STRN","*TRIX_MODE"

"<UNITS>","m","","","","m","","mm","%","kN/m2","kN/m2","mm","Mg/m3","Mg/m3","kN/m2","kN/m2","kN/m2","%",""

"BH 5","24.00","UD 1","U","1","24.20","2","38.00","32.00","440.00","310.36","76.00","1.960","1.490","0.78","0.78","308.00","19.820","Plastic"

"BH 5","24.00","UD 1","U","1","24.20","1","38.00","33.00","220.00","299.7","76.00","1.940","1.460","","","","11.88","Plastic"
"BH 5","24.00","UD 1","U", <mark>"2",</mark> "24.20" <mark>,"2"</mark> ,"38.00","32.00","440.00","310.36","76.00","1.960","1.490","","","","19.820","Plastic"
"BH 5","24.00","UD 1","U", <mark>"3",</mark> "24.20" <mark>,"3"</mark> ,"38.00","33.00","880.00","397.99","76.00","1.940","1.460","","","","8.76","Plastic"

Suggested AGS checker programs

Suggested AGS checker programs (for your reference):

AGS Checker of gINT from Bentley. https://www.bentley.com/en/resources/software/ags-toolkit

AGS Checker of KeyAGS4 from Keynetix. https://communities.bentley.com/products/geotechnical1/w/wiki/50417/keyags-freeversion

PS:

Web link for AGS(SG) guidelines book published by BCA <u>https://www1.bca.gov.sg/docs/default-source/docs-corp-regulatory/building-</u> <u>control/electronic transfer si data.pdf?sfvrsn=c2235aea 2</u>