

GUIDE ON GROUND INVESTIGATION AND GEOTECHNICAL CHARACTERISTIC VALUES TO EUROCODE 7

Revision: 24th April 2015

Working Group

Chairman	:	Er. Dr. Ng Tiong Guan	-	Geotechnical Society of Singapore
Members	:	Er. Dr. Poh Teoh Yaw Er. Prof Harry Tan Siew Ann Er. Chua Tong Seng Er. Dr. Wen Dazhi Er. Niu Jian Xin	- - -	Building and Construction Authority National University of Singapore Kiso Jiban Singapore Pte Ltd Geotech & Tunnel Consult GeoAlliance Consultants Pte Ltd
Acknowledgeme	ents:	Er. Chin Leong Siong Er. Michael Sien Er. Lim Shiyi Ms. Tung Qiaoyue	- - -	Building and Construction Authority Building and Construction Authority Building and Construction Authority Building and Construction Authority

Copyright @ 2015 Geotechnical Society of Singapore

All rights reserved. This document or any part therefore may not be reproduced for any reason whatsoever in any form or means whatsoever or howsoever without the prior written consent and approval of the Geotechnical Society of Singapore.

Whilst every effort has been made to ensure the accuracy of the information contained in this publication, the Geotechnical Society of Singapore, its members or agent shall not responsible for any mistake or inaccuracy by these said parties.

Content Page

1.0	Intr	oduction	1
	1.1	Background	1
	1.2	Compliance of Ground Investigation Practices to Eurocode 7	2
2.0	Pre	liminary Investigations	2
	2.1	Geotechnical Categorisation (GC) of Projects	2
	2.2	Suggested Minimum Number of Boreholes for Local Practices	5
	2.3	Re-classification of Soil/Rock from Existing GI in British Standards	6
3.0	Des	ign Investigations	6
	3.1	Planning of Field and Laboratory Testing	6
	3.2	Ground Water Measurement	7
	3.3	Soil Sampling	7
	3.4	Suggested Number of Field and Laboratory Tests	8
4.0	Det	ermine the Value of a Geotechnical Parameter for Design	10
	4.1	Concept of Characteristic Values	10
	4.2	Availability of ground investigation data and application of methods to	12
		determine characteristic values	
	4.3	Other acceptable design solution	13
5.0	Sub	mission documents	13
	5.1	Ground Investigation Report (GIR)	13
	5.2	Geotechnical Design Report (GDR)	14
	5.3	Ground Investigation Data in Standardised Electronic Format	14
6.0	Fur	ther Reading	15
A	· •	Cuidenes on re-closeffication of sail and reals from Dritich Standards to	

- Annex A Guidance on re-classification of soil and rock from British Standards to Eurocode Standards
 Annex B Guidance on field tests to determine soil parameters
- Annex C Guidance on laboratory tests to determine soil parameters
- Annex D Suggested number of samples to be tested to obtain soil/rock parameters
- Annex E Example of obtaining characteristic values of c' and tan φ ' from laboratory tests or other correlation
- Annex F Example of obtaining characteristic SPT N values (large amount of data)
- Annex G Example of obtaining characteristic values of c' and tan φ 'using s'-t tests at failure

1. Introduction

1.1 Background

This guide aims to highlight to designers the key aspects of geotechnical investigation to Eurocode 7 for producing a **Ground Investigation report (GIR)** and subsequently for the determination of characteristic ground values as part of the **Geotechnical Design Report (GDR)**.

Eurocode 7 requires designers to be responsible for the planning of the geotechnical investigation and the specifying of the necessary field and laboratory testing to be carried out. Eurocode 7 holds the designers of ground investigation accountable for their decisions and requires the rationale behind all geotechnical parameters used for design to be justified.

BS EN ISO 22475-1 provides guidance to designers on specifying the sampling and testing programme that they would need to determine the geotechnical parameters and produce a GIR. Thereafter, designers have to determine the "characteristic" value of a geotechnical parameter based on the derived data values from the GIR and together will form part of the GDR. The GIR and GDR are key geotechnical reports that the designer is expected to deliver as part of Eurocode 7 requirements (refer section 5 for further details on GIR and GDR). The GIR and GDR will form the basis for the designers to carry out geotechnical design for the project.

This guide will cover the key aspects of the GIR and the GDR as below:

Ground Investigation Report (GIR)

- i) Preliminary investigations
 - Geotechnical Categorisation of projects
 - Planning of borehole locations
- ii) Design investigations
 - Identification of types of parameters required for geotechnical design
 - Planning of field and laboratory testing, ground water measurement, soil/rock sampling, number of field and laboratory tests to be carried out

Geotechnical Design Report (GDR)

- iii) Determination of characteristic ground values for geotechnical design
 - via selection method or statistical evaluation
- iv) Detailed geotechnical design
 - Geotechnical calculations and drawings

Notwithstanding this, designers should also refer to relevant references mentioned in section 6 and any other specialist guidance that may be available.

1.2 Compliance of Ground Investigation Practices to Eurocode 7

The National Annex (NA) to SS EN1997-2 has adopted guidance from EN22475-2 and EN 22475-3 for the qualifications criteria and conformity assessment procedures for enterprises and personnel involved in ground investigation. For compliance on the requirements of personnel, the specialist GI firms are suggested to obtain an "Accreditation of Inspection Bodies for Site Investigation" administered by SPRING Singapore.

2. Preliminary Investigations

2.1 Geotechnical Categorisation (GC) of Projects

2.1.1 Designers are required to carry out the preliminary categorisation of the projects based on the guide provided in the Table 2.1 and Figure 2.1. Note a geotechnical categorization may apply to a whole or to part of a project. It is not required to treat the whole of the project according to the highest of these categories. (SS EN 1997-1:2004 Cl 2.1(13))

Figure 2.1: Geotechnical Categorisation of projects

Geotechnical	Description of Category	Example of projects
1	 small and relatively simple structures: for which it is possible to ensure that the fundamental requirements will be satisfied on the basis of experience and qualitative geotechnical investigations; with negligible risk. 	 Landed housing on shallow foundations in firm residual soil Single storey sheds Link-ways Minor roadside drain
2	 conventional types of structure and foundation with no exceptional risk or difficult ground or loading conditions 	 canal conventional buildings on shallow or raft foundations; pile foundations; walls and other structures retaining or supporting soil or water < 6m height; excavations < 6m depth bridge piers and abutments; embankments and earthworks; ground anchors and other tied-back systems; tunnels in hard, non-fractured rock/ competent soils, and not subjected to special water tightness or other requirements.
3 EC7. Clause 2.1 Expectations of GI, refer table 2.2	fall outside the limits of Geotechnical Categories 1 and 2	 very large structure such as infrastructure projects for rail and road tunnels utilities tunnels of more than 3 m in diameter airport terminal buildings foundation for building of 30 storey or more; unusual structures such as port structures in poor ground conditions; structures involving abnormal risks such as dam, dikes GBW(ERSS) in close proximity to existing buildings except for single unit landed housing development, unusual or exceptionally difficult ground such as foundation in limestone areas for more than 6 storey or unusually loading conditions foundation for high-rise of more than 10 storey on reclaimed land, or soft soils with combined thickness of soft soils of more than 8 m GBW (ERSS) in soft soil ground conditions special buildings subjected to seismic risks (according BC3);

Table 2.1: Geotechnical Categorisation of Projects

2.1.2 Eurocode 7 requires designers to plan the geotechnical investigations so as to ensure that relevant geotechnical information and data are available at the various stages of the project. (SS EN1997-2:2007 Cl 2.1.1(1)P)

2.1.3 Geotechnical investigations is not limited to ground investigations but also include appraisal of the surroundings (near canals, buried utilities, known ground abnormalities), adjacent buildings and history of the site (previous buried rivers etc.). (SS EN1997-2:2007 Cl 2.1.1(5))

2.1.4 Depending on the outcome of the geotechnical investigations, a GC 2 project could be reclassified as a GC 3 project. For instance, if underlying cavities were found during the geotechnical investigations, the designer may need to specify more detailed investigations as he deems fit.

2.1.5 In other words, geotechnical categorisation is an on-going process and should be reassessed at different design stages by the designer.

Figure 2.2: Assessment of Geotechnical Categorisation during design process

2.2 Suggested Minimum Number of Boreholes for Local Practices

2.2.1 All projects identified or re-assessed under GC 2 and 3 are required to carry out borehole investigations to sufficient extent and depth. The geotechnical investigations shall provide sufficient data concerning the ground and the ground water conditions for a proper description of the essential ground properties and a reliable assessment of the characteristic values of the ground parameters to be used in design calculations. (Reference SS EN 1997-2 cl.3.2.1) The number of investigation boreholes should meet the requirements as stipulated in Table 2.2. Where appropriate, CPTu may be used to complement the borehole investigation planning.

2.2.2 Boreholes should go more than 5m into hard stratum with SPT blow counts of N>100 or more than 3 times the pile diameters beyond the intended pile toe termination depth, whichever greater. For shallow foundation, the boreholes should be at least 3 times the width of foundations, such as pad footing / strip footing or other types of shallow foundation.

2.2.3 Previous ground investigation carried out could be considered if the borehole meets the requirements, and additional boreholes should be carried out where the designer deems necessary.

2.2.4 Designers should refer to SS EN 1997-2 Annex B for additional guidance and examples.

Structures Type	Number of BH required (GC3 projects should adopt the more onerous number of boreholes)
Buildings –	
Up to 10 stories high (excluding landed housings)	15m to 40m grid, minimum 1 BH per block, and 3 BHs per site
More than 10 stories high	10m to 30m grid, 1 BH per 300sqm, minimum 2 BHs per block, and 3 BHs per site
Large area	\leq 60 m grid per BH, at designer's discretion
Roads, railways, canals, pipelines, inland dikes	1 BH every 20 to 200m
ERSS, retaining wall < 6m high	1 BH every 15 to 40m
ERSS, retaining wall >= 6m high	1 BH every 10 to 30m

Table 2.2: Suggested	minimum numbe	r of boreholes	for for lo	ocal practices

Tunnelling in built-up area	1 BH every 10 to 75m
Tunnelling in green field area	1 BH every 20 to 200m
Dam, costal dikes, weirs	1 BH every 25 to 75m along vertical sections
Road Bridges, tower stacks, heavy machinery foundation	2 to 6 BHs per foundation

2.3 Re-classification of Soil/Rock from Existing GI in British Standards

2.3.1 The classification and description of soil/rock types in Eurocode 7 is different from those in the BS standards. The designer should reclassify the soil/rock types to the Eurocode and this information should be documented as part of the GIR/GDR. Designers could refer to Annex A of this document on how reclassify the soil/rock types. Annex A also provides guidance on key differences between British Standards and Eurocodes.

3. Design Investigations

3.1 Planning of Field and Laboratory Testing

3.1.1 SS EN 1997-2 requires designers to design the investigation programmes to specify the investigation boreholes layout and suitable field and/or laboratory tests relevant to the proposed works at the various stages of the project.

3.1.2 Before designing the investigation programme, the available information and documents gathered during the preliminary investigations should be evaluated in a desk study. (SS EN 1997-2:2007 CL2.2 (2)P)

3.1.3 After the desk study, designers are required to visually examine the site and record findings and cross-check against the desk study evaluated information. (SS EN 1997-2:2007 CL 2.4.2.2(1))

3.1.4 Test results from existing ground reports that are obtained from field testing are acceptable across all Geotechnical Categories. SS EN1997-2 provides Annexes which give correlations for various geotechnical parameters using common field tests. The list of common field tests to correlate to relevant geotechnical parameters and the suitability of the tests with respect to different soil types are shown in Annex B.

3.1.5 Test results from existing ground reports that are obtained from laboratory testing are only acceptable if the tested samples were obtained

from suitable methods of sampling. The table in Annex C suggests different lab tests for obtaining the relevant soil parameters.

3.1.6 The tests must be undertaken and reported in accordance with the corresponding Testing Standard of EN ISO 22476 Annex 9.4 Table A4.2.

3.2 Ground Water Measurement

3.2.1 The existing ground-water levels shall be established during the ground investigation. Any free water levels observed during the investigation shall be recorded.

3.2.2 Ground water measurement shall comply with BS EN ISO 22475 -1 regarding drilling and sampling methods for different soil conditions. (SS EN1997-2:2007 CL3.6.2(1))

3.2.3 Measurements must be made at a frequency that ensures that variations are properly detected and equipment must be appropriately selected and installed to allow this to be done.

3.2.4 Field-tested soil permeability values from existing ground reports could be adopted across all Geotechnical Categories.

3.3 Soil Sampling

3.3.1 SS EN 1997-2 imposes requirements on the quality of the samples depending on the sampling methods and ground conditions. The requirements could be found in BS EN ISO 22475-1.

3.3.2 Sampling methods are categorised into Cat A, B and C. BS EN ISO 22475-1 requires appropriate sampling category to be carried out to obtain different quality class of samples. Refer to Table 3.4. The detailed categorisation of the methods of sampling depending on the soil conditions can be found in BS EN ISO 22475-1 Tables 2 and 3.

	Quality Class				
	1	2	3	4	5
Sampling category according to	Α				
EN ISO 22475 -1			В		
Unchanged acil proportion					С
onchanged son properties					
Particle size					
Water content					
Density, density index, permeability					
Compressibility, shear strength					
Properties that can be determined					
Sequence of layers					
Boundaries of strata-broad					
Boundaries of strata-fine					
Atterberg limits, particle density, organic content					
Water content					
Density, density index, porosity, permeability					
Compressibility, shear strength					

Table 3.4 Quality class and soil properties that can be determined (SS EN1997-2:2007 Table 3.1)

3.4 Minimum Number of Field and Laboratory Tests

- 3.4.1 The suggested minimum number of tests per soil stratum to be carried out is shown in Appendix D where appropriate.
- 3.4.2 Test results from existing ground report with appropriate quality class sampling are allowed to be adopted. Additional sampling or field tests would be required if the minimum suggested number of specimens could not be met.

4. Determinate the Value of a Geotechnical Parameter for Design

4.1 Concept of Characteristic Values

4.1.1 Eurocode 7 introduces the concept of characteristic values in which partial factors are applied to obtain suitably safe but economical design values of soil parameters. Eurocode 7 defines the selection of the characteristic value of a geotechnical parameter as "a cautious estimate of the values affecting the occurrence of the limit state".

4.1.2 The applicable geotechnical parameters required to be determined as characteristic values for design are as follows:

Applicable Geotechnical Parameters					
tanø'	Effective angle of shearing resistance				
C'	Effective cohesion value				
Cu	Undrained shear strength				
Ν	SPT N values				
q_c	CPT q_c values				

4.1.3 SS EN1997-1 Clause 2.4.5.2(4)P states, the selection of characteristic values for geotechnical parameters shall take account of the following:

- geological and other background information, such as data from previous projects;
- the variability of the measured property values and other relevant information, e.g. from existing knowledge;
- the extent of the field and laboratory investigation;
- the type and number of samples;
- the extent of the zone of ground governing the behaviour of the geotechnical structure at the limit state being considered;
- the ability of the geotechnical structure to transfer loads from weak to strong zones in the ground.

However, literature has shown that when designers were asked to select characteristic values of various geotechnical parameters, the result revealed a very wide range of interpretation in which the design outcome would be grossly affected. The designer should determine the characteristic value as not more than the mean value of the geotechnical parameter with half a standard deviation reduction (moderately conservative parameters) or 1.65 times standard deviation (inferior parameters). 4.1.4 SS EN1997-1 Clause 2.4.5.2(10) suggested statistical methods to determine characteristic ground values. When applying statistical methods, the designer should consider the following:

- adequacy and quality of geotechnical investigations
- distribution of sampling/testing
- highly variable non-conforming nature of geo-materials
- allowing the use of a priori knowledge of comparable ground properties,
- applying engineering judgement

4.1.5 When adopting statistical methods, for most limit state cases where the soil volume involved is large, the characteristic value should be determined such that a cautious estimate of the mean value is a selection of the <u>mean value</u> of the limited set of geotechnical parameter values, with a confidence level of 95% (moderately conservative parameters); where local failure is concerned, a cautious estimate of the <u>low value</u> is a 5% fractile (inferior parameters). Figure 4.1 illustrates some examples for better understanding. (SS EN 1997-1 Cl. 2.4.5.2 (11))

*not applicable if shaft resistance contribute to at least 70% of design pile resistance (i.e. local failure due to pile bearing is unlikely)

Figure 4.1 Some examples of limit state design

4.1.6 Where local weakness is discovered during the ground investigations e.g. faults, localised soft spot due to presence of streams/rivers, the designer shall carry out design based on the low value of 5% fractile for the affected design section.

4.1.7 Designer could consider the statistical methods suggested in Annex E and F.

4.1.8 It is suggested for better estimation of geotechnical characteristic parameters c' and tan ϕ ', designer could specify s'-t tests (stress path) with at least 12 numbers of tested sample with different applied pressure to obtain c' and tan ϕ ' of the same stratum. An example is shown in Annex G.

4.2 Availability of ground investigation data and application of methods to determine characteristic values

4.2.1 Designers should refer to Table 4.3 to determine characteristic values based on the available ground investigation reports.

Geotechnical Category	GI availability	Determining characteristic values
1	Based on available GI, or GI of immediate neighbour plots supplemented with available literature e.g. geological map, published ground parameter	"eyeball method" (Section 4.1.3) could be adopted. Where the values are obtained from the GI of a neighbouring plot, the determined characteristic value should be reduced by a further factor of 1.2.
2	Available GI based on BS and/or new GI to EC stds	"eyeball method" (Section 4.1.3) or Statistical method (Section 4.1.7)
3	Available GI based on BS and/or new SI to EC stds	"eyeball method" (Section 4.1.3) or Statistical method (Section 4.1.7), the latter is suggested if >= 13 sets of data is available (Bond & Harris 2008)

Table 4.1: Suggested methods to determine characteristic values for different Geotechnical Categories

4.2.2 Designers are encouraged to conduct new ground investigations to the latest Eurocode standards to obtain more reliable data for safe and economic design.

4.3 Other design considerations

4.3.1 In some design situations, for example, very soft soil with low undrained shear strength, if the designer could demonstrate that the application of partial factors to the ground characteristic values will lead to design which are unreasonable or even physically impossible, he could apply the partial factors directly to the effects of the actions instead. (reference SS EN 1997-1 cl. 2.4.7.3.2 (2))

5. Submission documents

5.1 Ground Investigation Report (GIR)

5.1.1 Ground investigation report would record the preliminary investigation and the design investigation works prescribed by the design. The geotechnical investigations shall be planned taking into account the construction and performance requirements of the proposed structure. The scope of the geotechnical investigations shall be continuously reviewed as new information are obtained during execution of the work.

5.1.2 Routine field investigations and laboratory testing shall be carried out and reported generally in accordance with international recognised standards and guidance. Deviations from these standards and additional test requirements shall be reported.

5.1.3 Preliminary and design investigations prescribed by the designer shall be reflected in the Ground Investigation Report and provide the following:

- i) Geotechnical categorisation of the project.
- ii) Planning of boreholes and sampling methodology
- i) Evaluation of the field and laboratory reports
- ii) Derivation of the geotechnical values based on the field and laboratory reports
- iii) Information required for an adequate design of the temporary and permanent works
- iv) Information required to plan the method of construction
- v) Information on groundwater
- vi) Any difficulties that may arise during construction

5.1.4 The parameters, for example localised area of poor soil due to preexisting rivers, which may affect the ability of the structure to satisfy its performance criteria shall be established before the start of the final design.

5.2 Geotechnical Design Report (GDR)

5.2.1 The results of a geotechnical investigation shall be compiled in a Ground Investigation Report (GIR), which shall form a part of the Geotechnical Design Report (GDR). The Geotechnical Design Report (GDR) should form part of the structural design report for submission to BCA and to include the following items:

- a) a description of the site and surroundings;
- b) a description of the ground conditions;
- c) a description of the proposed construction, including actions;
- d) design values of soil and rock properties, including justification, as appropriate; (i.e. determination of characteristic values)
- e) statements on the suitability of the site with respect to the proposed construction and the
- f) level of acceptable risks; (i.e. impact assessment)
- g) plan of supervision & monitoring
- h) a note of items to be checked during construction or requiring maintenance or monitoring.

5.3 Ground Investigation Data in Standardised Electronic Format

In 21st January 2013, the BCA's Singapore Geological Office (SGO) issued a circular on the implementation of SI Data in standardised electronic format. The '*Guidelines on Electronic Transfer for Site Investigation* Data' which covers Singapore first standardised electronic file format protocol AGS(SG) (Association of Geotechnical and Geo-environmental Specialist) for the geological, geotechnical, geo-environmental, geophysical field and laboratory testing data can be downloaded from the BCA website at the following link: <u>http://www.bca.gov.sg/StructuralPlan/others/Electronic transfer SI data.pdf</u>.

All SI contractors **shall** provide the following items to their client:

- 1. Ground Investigation report (pdf format) with the labelling of GI report file as **SGO_SI_**xxxx.pdf
- 2. Ground Investigation data in AGS(SG) format with the labelling of GI data file as **SGO_SI_**xxxx.ags
- 3. AGS checker log in text format with the labelling of AGS checker log as **SGO_SI_**AGS Checker log.txt
- GI report Declaration page (pdf format) with the labelling of GI report declaration file as SGO_SI_Declaration.pdf

It shall be the duty of the GI contractor to provide the above mentioned items in the prescribed naming convention for electronic submission of GI data.

The submission of GI data in the AGS(SG) electronic format is now a requirement, with effective from 1st July 2013, for all new projects. All Qualified Person doing the first submission for the new project are to submit the files provided by the GI contractor. They are to submit the above mentioned 4 files in "as-it-is" state. Renaming of file or incorporating the GI report into the design report will affect the electronic submission and thus result in Written Direction.

6. Further reading

a. Designers' Guide to EN 1997-1 Eurocode 7: Geotechnical design – General rules

b. Concise Eurocodes: Geotechnical design

c. Eurocode 7: Geotechnical Design Worked Example, JRC Scientific and Policy Report (available from internet)

Annex A

Guidance on re-classification of soil and rock from British Standards to Eurocode Standards

Annex A.1. Comparing EC 7 and BS 5390:1999

Key Item	Commentary on Practical Application
Relative density (sands & gravels)	No change is required as 14688 permits SPT to be used as basis but without defining scale
Consistency (fine soils)	Terminology is same as BS5930 for clay, the terms are defined solely by hand tests and have no numerical strength connotations (e.g very soft, soft very stiff). (See Table A2)
Undrained shear strength (fine soils)	Introduce terms (e.g low, medium, high), based on results of field or laboratory tests. The strength term to be presented in log in addition to consistency. (See Table A3)
Secondary fractions	Introduce secondary fine constituents to a fine principal soils (silty CLAY and clayey SILT), but these will be used only when secondary constituents is significant. (See EN ISO 14688-1:2002 clause 4.3.3) EC7 (EN ISO 14688-1:2002) mention using prefixes (slightly, - very) for coarse secondary fractions. No mention of a prefix for fine secondary fractions. As there is no field mechanism for quantification, recommend the prefixes not be applied.
Particle shape	Introduce two additional terms (very angularwell rounded) to extend the range (See Table A4)
Particle size	Change boundaries between fractions which were 6.0 and orders of magnitude to become 6.3 Introduce additional sub-fraction of "large boulders" (particles > 630mm) (See Table A5)
Principal fraction	Discontinue the hybrid term "CLAY/SILT"
Minor constituents	Introduce defined terms specifically for carbonate content (free, calcareous, highly
	calcareous) but only use where presence detected.
Minor constituents	Introduce defined terms specifically for carbonate content (free, calcareous, highly calcareous) but only use where presence detected.

Table A1. SUMMARY OF KEY CHANGES AFFECTING DESCRIPTION OF INORGANIC SOILS

Local Practice extracted From TERZAGHI & PECK	Undrained Shear Strength, Cu (kPa)	Terms	BS 5930:1999	BS 5930:1999 A2:2010	EN ISO 14688–1:2002 (Clause 5.14)
(SPT N- value)			(Table13, Page114)	(Table13, Page114)	
0 to 2	<20	Very Soft	Finger easily pushed in up to 25mm	Finger easily pushed in up to 25mm; exudes between the fingers	It exudes between the fingers when squeezed in hand.
2 to 4	20 to 40	Soft	Finger pushed in up to 10mm	Finger pushed in up to 10mm, moulded by light finger pressure	It can be moulded by light finger pressure.
4 to 8	40 to 75	Firm	Thumb makes impression easily	Thumb makes impression easily, cannot be moulded by fingers, rolls to threads	It cannot be moulded by fingers, but rolled in hand to thick threads without breaking or crumbling.
8 to 15	75 to 150	Stiff	Can be indented slightly by thumb	Can be indented slightly by thumb, crumbles in rolling thread; remoulds	It crumbles and breaks when rolled to 3mm thick threads but is still sufficiently moist to be moulded to a lump again.
15 to 30	150 to 300	Very Stiff	Can be indented by thumb nail	Can be indented by thumb nail, cannot be moulded, crumbles	It has dried out and is mostly light coloured. It can no longer be moulded but crumbles under pressure. It can be indented by thumbnail.
>30	>300	Hard (or very weak mudstone)	Can be scratched by thumbnail	Can be scratched by thumbnail	NA

Table A2. Comparison Table for Field Practice For Determination Consistency of Fine Soils

BS 593	0:1999	EN ISO 14689-1:2003			
Term	Undraine Strengt	ed Shear h (kPa)	Term		
		<10	Extremely low		
Very Soft	<20	10 to 20	very low		
Soft	20 to 40	20 to 40	low		
Firm	40 to 75	40 to 75	medium		
Stiff	75 to 150	75 to 150	high		
Very Stiff	150 to 300	150 to 300	very high		
Hard (or very weak mudstone)	>300	300 to 600	extremely high		

Table A3. Comparison Table for Undrained Shear Strength (kPa) of soil

BS 5930:1999	Particle shape	EN ISO 14688–1:2002
Angular	Angularity/roundness	Very angular Angular
Sub-angular Sub-rounded		Sub-angular Sub-rounded
Rounded		Rounded Well rounded
	Form	Cubic
Flat or Tabular		Flat
Elongate		Elongate
Rough	Surface texture	Rough
Smooth		Smooth

Table A4. Comparison Table for Terms for the designation of particle shape

BS 5930:1999			EN ISO 14688-1:2002			
Particle sizes	Symbols	Sub-	Soil fractions	Sub-	Symbols	Particle sizes
(mm)		fractions		fractions		(mm)
				Large	L Bo	> 630
			Very coarse	boulder	200	
> 200	Во	Boulder	soil	Boulder	Во	> 200 to 630
>60 to 200	Со	Cobble		Cobble	Со	>63 to 200
>2 to 60	Gr	Gravel		Gravel	Gr	>2 to 63
>20 to 60	CGr	Coarse		Coarse	CGr	>20 to 62
>201000	COI	gravel		gravel	CGI	>20 10 05
>6.0 to 20	MGr	Medium		Medium	MGr	>6.3 to 20
20.0 10 20	IVIGI	gravel		gravel	IVIGI	
>2.0 to 6.0	FGr	Fine gravel	Coarse soil	Fine gravel	FGr	>2.0 to 6.3
>0.06 to 2.0	Sa	Sand		Sand	Sa	>0.063 to 2.0
>0.6 to 2.0	CSa	Coarse sand		Coarse sand	CSa	>0.63 to 2.0
>0.2 to 0.6	MSa	Medium sand		Medium sand	MSa	>0.2 to 0.63
>0.06 to 0.2	FSa	Fine sand		Fine sand	FSa	>0.063 to 0.2
>0.002 to 0.06	Si	Silt		Silt	Si	>0.002 to 0.063
>0.02 to 0.06	Csi	Coarse silt		Coarse silt	Csi	>0.02 to 0.063
>0.006 to 0.02	Msi	Medium silt	Fino coil	Medium silt	Msi	>0.0063 to 0.02
>0.002 to	Es:	Fine eilt	FILLE SOIL		E e i	>0.002 to
0.006	FSI	rine siit		Fine slit	FSI	0.0063
≤0.002	Cl	Clay		Clay	Cl	≤0.002

Table A5. Comparison Table for Particle size fractions

Annex A.2. Comparing EC 7 and BS 5390:1999 for Rock

Key Item	Commentary on Practical Application
Strength	Change in the range of terms have been extended and they have ISRM definitions (both field identification & numerical values) (See Table B2)
Grain size	Change in the orders of boundaries magnitude from 6 to become 6.3 (same as for soils)
Minor constituents	Introduce defined terms specifically for carbonate content (same as soils)
Weathering	No change required in Description of weathering effects at material or mass scales (BS5930 Approach 1). Change to CLASSIFICATION is that BS5930 Approach 2 & 3 are discontinued; where appropriate Approach 4 or 5 will continue. (See Table B3)
Discontinuities	 Spacing: quantifying prefix given to be maintained Roughness: change to definition of scale terms (small, medium, large), to ISRM (mm, cm, m) (See Table B4) Aperture: change to terms and definition to ISRM(See Table B5) Seepage: change to one of terms ("strong" becomes "large")

Table B1. SUMMARY OF KEY CHANGES AFFECTING DESCRIPTION OF ROCKS

BS 5930:1999		EN ISO 14689-1:2003	
Term	Unconfined Streng	Term	
Very weak	< 1.25	< 1	Extremely weak
Weak	1.25 to 5	1 to 5	Very weak
Moderately weak	5 to 12.5	5 to 25	Weak
Moderately strong	12.5 to 50	25 to 50	Medium strong
Strong	50 to 100	50 to 100	Strong
Very strong	100 to 200	100 to 250	Very strong
Extremely strong	> 200	> 250	Extremely strong

Table B2. Comparison Table for Unconfined Compression Strength (MPa) of rock

BS 5930:1999		Standard	EN ISO 14689-1:2003		
Description Classification for Rock Mass and Rock Materials	Grades Symbols	Term	Grades Symbols	Description Classification of Rock Mass Weathering grade	
Unchanged from original state	I	Fresh	0	No visible sign of rock material weathering; perhaps slight discoloration on major discontinuity surfaces.	
Slight discolouration, slight weakening	II	Slightly weathered	1	Discoloration indicates weathering of rock material and discontinuity surfaces.	
Considerably weakened, penetrative discoloration Large pieces cannot be broken by hand	III	Moderately weathered	2	Less than half of the rock material is decomposed or disintegrated. Fresh or discoloured rock is present either as a continuous framework or as core stones	
Large pieces cannot be broken by hand Does not readily slake when dry sample immersed in water	IV	Highly weathered	3	More than half of the rock material is decomposed or disintegrated. Fresh or discoloured rock is present either as a discontinuous framework or as core stones.	
Considerably weakened Slakes Original texture apparent	V	Completely weathered	4	All rock material is decomposed &/or disintegrated to soil. The original mass structure is still largely intact.	
Soil derived by in situ weathering but retaining none of original texture of fabric	VI	Residual soil	5	All rock material is converted to soil. The mass structure & material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.	
Widely and commonly use in local practice for classification of rock materials and rock mass weathering grade.			The desc De alteration o using c	riptive terms are provided and defined in 14689- 1(Table2) as Fresh, Discoloured, Disintegrated, composed to describe the results of weathering/ of rock material. These terms may be subdivided qualifying terms of "partially, wholly and slightly."	

Table B3. Comparison Table for Classification of Weathering Grade

BS 5930:1999 Page.	9 (Table15, 135)	EN ISO 14	689–1:2003
Intermediate Scale (m)	Small Scale (cm)	Medium Scale <mark>(cm)</mark>	Small Scale (mm)
Stepped	Rough	Stepped	Rough
Stepped	Smooth	Stepped	Smooth
Stepped	Striated		
Undulating	Rough	Undulating	Rough
Undulating	Smooth	Undulating	Smooth
Undulating	Striated		
Planar	Rough	Planar	Rough
Planar	Smooth	Planar	Smooth
Planar	Striated		

Table B4. Comparison Table for Surface Roughness of Discontinuities

Aperture size term	Aperture		Aperture size term	
BS 593	30:1999	EN ISO 14689-1:2003		
Very Tight	< 0.1 mm	0.1 mm	Very tight	
Tight	0.1 to 0.5 mm	0.1 to 0.25 mm	Tight	
Moderately open	0.5 to 2.5 mm	0.25 to 0.5 mm	Partly open	
Open	2.5 to 10 mm	0.5 to 2.5 mm	Open	
Very open	>10 mm	2.5 to 10 mm	Moderately wide	
Cannot normally be described in cores.		1 to 10 cm	Wide	
		10 to 100 cm	Very wide	
		>1 m	Extremely wide	

Table B5. Comparison Table for Description of Discontinuity Aperture

Annex B Guidance on field tests to determine soil parameters

List of geotechnical parameters and correlation to relevant field tests common in Singapore

	Geotechnical Parameters	Relevant Field Tests	Reference SS EN 1997-2 (unless otherwise mentioned)	
φ'	Effective angle of shearing resistance			
E'	Drained Young's modulus	Cone Penetration Test (CPT)	Annex D	
Ened	One-dimensional odeometer modulus			
k	Bearing resistance factor for spread foundations	Pressure Meter Test	Annex E	
k	Compressive resistance factor for piles	(1 1011)		
I_D	Density index	Standard Penetration Test	Appay E	
φ'	Effective angle of shearing resistance	(SPT)		
,				
Cu	Undrained shear strength	Field Vane Test (FVT)	Annex I	
E _{oed}	One-dimensional odeometer modulus	Flat Dilatometer Test (DMT)	Annex J	
C_u	Undrained shear strength			
E _{oed}	Plate loading test modulus	Plate Loading Test (PLT)	Annex K	
k _s	Coefficient of subgrade reaction			

List of suitability of field tests to ground type and useful geotechnical information

Type of Field tests	Type of ground and suitability				
Type of Field lesis	Rock	Coarse Soils	Fine Soils		
CPT	((Type of Rock [Soft]))	Extension of layers Compressibility (Type of soil) (Groundwater) (Pore water pressure) (Density) (Shear strength) ((Permeability))	Extension of layers Shear strength (Type of soil) (Pore water pressure) (Density) (Compressibility) (Permeability)		
PMT	((Type of Rock)) ((Extension of layers))	Shear strength Compressibility ((Types of soil)) ((Extension of layers))	Shear Strength Compressibility ((Type of soil)) ((Extension of layers)) ((Pore water pressure)) ((Permeability))		
SPT with sample		(Types of soil) (Extension of layers) (Particle size) (Water content) (Density) (Shear strength) (Compressibility) (Chemical tests)	Type of soils Particle size (Extension of layers) (Water Content) (Atterberg limits) (Density) (Compressibility) (Chemical test)		
FVT			Shear Strength [soft to firm soil]		
Flat DMT		(Types of soil) (Extension of layers) (Density) (Shear Strength) (Compressibility)	(Extension of layers) (Shear strength) (Compressibility) ((Type of soil density))		
PLT	(Shear strength)	Shear strength Compressibility	Shear Strength Compressibility		
SUITABILITY => HIGH, (MEDIUM), ((LOW))					

Annex C

Guidance on laboratory tests to determine soil parameters

al			Type of soil				
;	Gravel	Sand	Silt	NC Clay	OC Clay	Peat organic clay	
E _{oed}							
Cc	(OED) (Triaxial)	(OED) (Triaxial)	(OED) (Triaxial)	(OED) (Triaxial)	(OED) (Triaxial)	(OED) (Triaxial)	
	(maxia)	(maxial)	(Thaxia)	(Thaxia)	(Thaxia)	(Thaxial)	
Е							
G	Triaxial	Triavial	Triavial	Triavial	Triavial	Triaxial	
C',φ'	Παλίαι	maxiai	Παλιαι	Παλιαι	maxia	maxiai	
Cu	NA	NA	Triaxial	Triaxial	Triaxial	Triaxial	
ρ	BDD	BDD	BDD	BDD	BDD	BDD	
Cv	NA	NA	OED Triaxial	OED Triaxial	OED Triaxial	OED Triaxial	
	TXCH	TXCH	PTC	TXCH	TXCH	TXCH	
k	PSA	PSA	TXCH	(PTF)	(PTF)	(PTF)	
			(PTF)	(OED)	(OED)	(OED)	
() => partially suitable only BDD B OED O PSA P Triaxial Tr		Bulk Density determination Odeometer Test Particle size analysis Triaxial Test		PTF PTC TXCH	Permeability te falling head pe Permeability te constant head Permeability co test in the triage	est in the rmeameter est in the permeameter onstant head ial cell (or	
		E G_c (OED) (Triaxial) E G c', φ' Triaxial C_u NA ρ BDD c_v NA ρ BDD c_v NA ρ SDD c_v NA $rriaxial$ TXCH PSA Triaxial	EndreiOund E_{oed} (OED) C_c (OED)(Triaxial)(Triaxial) E G G Triaxial c', φ' Triaxial C_u NA ρ BDD BDD BDD c_v NA k TXCH k PSA $OeenPSATriaxialTriaxialTriaxialTriaxial$	End of the controlControlControl E_{oed} C_c (OED) (Triaxial)(OED) (Triaxial)(OED) (Triaxial) E G G Triaxial TriaxialTriaxial Triaxial C_{u} NANATriaxial Triaxial ρ BDDBDDBDD c_v NANAOED Triaxial k TXCH PSATXCH PSAPTC TXCH (PTF)onlyBDD OED PSABulk Density determination Odeometer Test PSA Triaxial Triaxial Test	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

List of geotechnical parameters and relevant lab tests

For more details, please refer to (SS EN1997-2:2007 Table 2.3)

Annex D

Suggested number of samples to be tested to obtain soil/rock parameters

Table 3.3A: Classification tests. Minimum number of samples to be tested in one soil stratum (EN1997-2:2007 Annex M Table M.1)

Classification test	Minimum number of tests
Particle size distribution (Sieve + Hydro)	3
Water content	All samples of Quality Class 1 to 3
Strength index test	All samples of Quality Class 1 to 3
Consistency limits (Atterberg limits)	2
Loss on ignition (for organic and clay soil)	2
Bulk density	All samples
Density index	As appropriate
Particle density	1
Carbonate content	As appropriate
Sulfate content	As appropriate
рН	As appropriate
Chloride content	As appropriate
Soil dispersibility	As appropriate

Table 3.3B: Density tests. Minimum number of samples to be tested in one soil stratum

Variability in measured density	Minimum number of samples				
Range of measured density $>= 0.02 \text{ Mg/m}^3$	3				
Range of measured density <= 0.02 Mg/m ³	2				
Mean value shall be adopted as the final density					

Table 3.3C: Triaxial compression tests. Suggested minimum number of tests^a for one soil stratum

Geotechnical parameter	Minimum number of tests ^a		
Effective angle of shearing resistance	3		
Undrained shear strength ^b	4		
^a One test means a set of three individual specimens at different cell pressures or derived value from correlation to relevant field tests (SS EN 1997-2 Informative Annexes); Minimum 1 number of lab test is to be carried out			
^b If ratio max/min > 2, additional 1 test (field	or lab) is to be carried out.		

Table 3.3D: Incremental odeometer test. Suggested minimum number of tests^a for one soil stratum

Variability in oedometer modulus <i>E</i> _{oed}	Minimum number of tests ^a			
Range of values of $E_{oed} \ge 50\%$	3			
~20% < Range of values of E _{oed} <~50%	2			
Range of values of $E_{oed} < \sim 20\%$ 2				
^a The number of specimens tested should be increased if the structure is very				
sensitive to settlements i.e. Kallang Formation				
Mean value would be adopted as the final E _{oed}				

Table 3.3E: Permeability tests. Suggested minimum number of soil specimens to be tested^a for one soil stratum

Variability in measured coefficient of permeability (<i>k</i>)	Minimum number of tests			
$k_{max}/k_{min} > 100$	4			
$10 < k_{max}/k_{min} \le 100$	3			
$k_{max}/k_{min} \le 10$ 2				
The evaluation of the coefficient of permeability can be optimised by a				
combination of any of these methods:				
 field tests, such as pumping and borehole permeability tests; 				
empirical correlations with grain size distribution;				
3. evaluation from an oedometer test:				

4. permeability tests on soil specimens in the laboratory. Please refer to SS EN 1997-2 S.3 for suggested methods for different soil types.

Table 3.3F: Uniaxial compression tests. Suggested minimum number of test specimens to be tested for one rock formation - Brazillian split tests and triaxial tests

Geotechnical parameter	Minimum number of tests
Uniaxial compressive strength	4 ^a
^a If standard deviation of measured strength	> 50%, additional 2 test specimen is
lo de lesled.	

Annex E

Example of obtaining characteristic values of c' and tan ϕ ' from laboratory tests or other correlation

E.1) Schneider(1999) Method

This method could be applied to determine the characteristic value of a geotechnical parameter.

 $X_d = m_X - 0.5s_X$ (upper bound equivalent to 95% mean reliable)

 $X_d = m_X - 1.65 s_X$ (lower bound equivalent to low value 5% fractile)

where

$$s_x^2 = \frac{1}{n-1} \sum (x_i - m_x)^2$$

 X_d = characteristic value m_X = mean value s_X = standard variation n = number of samples

An example of the determination of the characteristic value using the Schneider Method is illustrated as below: (take note of the deviation of ϕ ' shall be based on tan ϕ ' as the characteristic value)

	c' (kPa)	φ' (°)	tan φ' (–)
Borehole/test			
BH I/I	3	31	0.601
BH 1/2	4	30	0.577
BH 2/1	le la companya de la	35	0.700
BH 2/2	7	28	0.532
Statistical results			
Mean value	c = 3.75		$(\tan \varphi')_{mean} = 0.603$
Standard deviation	$\sigma_e = 2.50$		$\sigma_{a} = 0.071$

$X_d = m_X - 0.5s_X$	(95% reliable)
$X_d = m_X - 1.65s_X$	(5% fractile)

Characteristics values	Upper bound	Lower bound
C'k	2.5	1.25
tan φ' _k	0.568	0.532
φ' _k	29.6	28.0

The Schneider method assumes a normal distribution of data. Some geotechnical data fits a log-normal distribution especially for very soft soil or soil with very wide variation of parameters, hence using this method can result in characteristic values not complying with a 95% confidence limit.

E.2) Statistical Evaluation Method

For GC3 projects where usually higher frequency of soil tests are carried out, designers should adopt the statistical method where a higher number of samples would give a more favourable characteristic value. Projects with more derived soil data from good quality sampling would benefit from this method.

Assuming homogenous soil, (e.g. residual, fluvial sand/clay) the characteristic mean value of a geotechnical parameter is calculated using: (EC0 D7.2)

$$X_{d} = m_{X} (1 - k_{n} V_{X})$$

 X_d = characteristic mean value at 95% reliable or 5% fractile, depending on the k_n input

 $m_X =$ mean value

 k_n = coefficient for 95% reliable of 5% fractile mean value (Table 4.1 or 4.2) V_x = coefficient of variation (unknown)

Note "V_X unknown" is adopted until more data are available and "V_X known" is established.

For " V_X unknown" case, V_X will be calculated using:

$$V_{\rm X} = s_{\rm X}/m_{\rm X}$$

where
$$s_{\rm X}^2 = \frac{1}{n-1} \sum (x_{\rm i} - m_{\rm X})^2$$

n = number of samples $s_X = standard variation$

Hence

This method is more suitable for GC3 projects where usually > 10 data sets are available. However for illustration purpose, we will demonstrate obtaining the 95% reliable characteristic values with a simple example as below: (take note of the deviation of φ ' shall be based on tan φ ' as the characteristic value)

	c' (kPa)	arphi' (°)	tan $arphi'$ (–)
Borehole/test			
BH I/I	3	31	0.601
BH 1/2	4	30	0.577
BH 2/1	1	35	0.700
BH 2/2	7	28	0.532
Statistical results			
Mean value	$\epsilon_{\rm mean} = 3.75$		$(\tan \varphi')_{\rm mean} = 0.603$
Standard deviation	$\sigma_{c} = 2.50$		σ _a = 0.071
Coefficient of variation	$V_{\rm c} = 0.667$		$V'_{\tan\varphi} = 0.118$

Mean values of c' and ϕ' , their standard deviation and coefficient of variation obtained from four triaxial results

 ${\rm X}_{d,95} = m_{\rm X} \left(1 - k_{n,95} \; V_{\rm X}\right) \qquad \mbox{ where } n = 4, \; k_{n,95} = 1.18 \; (Table \; 4.1)$

Characteristics values	Mean value (95%)		
C' _k	0.8		
tan φ' _k	0.519		
φ' _k	27.5		

Values of the coefficient kn for the assessment of a characteristic value as a 95% reliable mean value

п	V _x unknown			
3	1.69			
4	1.18			
5	0.95			
6	0.82			
8	0.67			
10	0.58			
20	0.39			
30	0.31			
00	0			

1

Values of the coefficient kn for the assessment of a characteristic value as a <u>5% fractile</u>

n	V _x unknown		
3	3.37		
4	2.63		
5	2.33		
6	2.18		
8	2.00		
10	1.92		
20	1.76		
30	1.73		
~~	1.64		

For large amount of data, the mean line could be determined using the plotting Excel spreadsheet trendline function. Some examples of how to determine the ground characteristic values are shown in Annex F.

Annex F

Example of obtaining characteristic SPT N values (large amount of data)

The designer could adopt the following methods to obtain the characteristic SPT N values, where there is large amount of data available.

i) A particular homogenous soil layer shows a linear regression trend.

		Mean N				Mean N	
Depth	derived N	(Xm)	X-Xm	Depth	derived N	(Xm)	X-Xm
-1.0	3	1.3	1.7	-12.8	4	6.7	-2.7
-1.5	3	1.6	1.4	-14.0	9	7.3	1.7
-1.5	3	1.6	1.4	-14.3	7	7.4	-0.4
-1.5	3	1.6	1.4	-15.5	5	8.0	-3.0
-1.5	3	1.6	1.4	-15.8	5	8.1	-3.1
-1.5	3	1.6	1.4	-15.8	7	8.1	-1.1
-1.5	3	1.6	1.4	-17.3	8	8.8	-0.8
-3.3	6	2.4	3.6	-18.8	8	9.5	-1.5
-4.0	2	2.7	-0.7	-20.0	6	10.0	-4.0
-4.0	3	2.7	0.3	-20.0	10	10.0	0.0
-4.0	5	2.7	2.3	-23.3	10	11.5	-1.5
-4.3	7	2.8	4.2	-24.5	8	12.1	-4.1
-7.0	3	4.1	-1.1	-26.5	8	13.0	-5.0
-8.0	9	4.5	4.5				
-9.5	4	5.2	-1.2				
-9.5	10	5.2	4.8				
-10.0	4	5.5	-1.5				

From derived trendline (using Excel) equation y = mx + C, m = -2.1807, C = 1.8931

 $\Rightarrow \Sigma(X-Xm)^2 = 193$, std deviation, s = 2.6, k_{n,95} = 0.31, C₉₅ = 1.0935

 \Rightarrow Plot 95% reliable trendline using formula y = -2.1807 + 1.0935

ii) For a particular soil layer, where there is no apparent linear regression trend, designer could average the SPT N values by depth. (similar to current practice)

			Mean N			
Depth	Ν	n	(Xm)	X-Xm	Σ (X-Xm) ² = 53.6	
-26.3	30	10.0	35.3	-5.0		
-28.0	32			-3.0	std deviation, s = 2.4	
-29.8	34			-1.0		
-30.5	35			-0.1	$\kappa_{n,95} = 0.58$	
-31.0	36			0.5	$k_{n o 5} X_{m} = 1.42$	
-31.0	36			0.5		
-31.3	36			0.8	N ₉₅ = 34	
-32.5	38			2.2		
-32.5	38			2.2		
-33.0	38			2.8		
-34.3	40	10.0	42.6	4.2	_	
-34.5	40			4.5	Σ (X-Xm) ² = 571.2	
-35.0	41			5.1		
-35.8	41			6.0	std deviation, s = 2.4	
-36.8	43			7.1	k _{n of} = 0.58	
-36.8	43			7.1		
-37.0	43			7.4	$k_{n,95} X_m = 1.36$	
-39.3	45			10.0		
-39.5	46			10.3	N ₉₅ = 41	
-39.5	46			10.3		

Annex G

Example of obtaining characteristic values of c' and tan ϕ 'using s'-t tests at failure

From the triaxial tests of a soil stratum (at least 12 sets), the t-s' points are derived as below.

The t-s' points are plotted and using the trendline function from Excel, the trendline and equation could be obtained and back-substituted with s' values to obtained the t* values.

The example shows how to derive the 95% reliable mean values of c' and ϕ' . Refer to the formulas in this annex, denoting z to be s' and x to be t, the t_k values could be derived and the characteristic trendline of t_k -s' could be plotted. The characteristic values of c'_k and tan ϕ_k ' may be deduced by linearizing the relation t_k -s'. The appropriate s' interval should be selected so that the t-intercept (i.e. c'_k) is more than zero. In this example s' intervals from 100kPa to 600kPa are selected.

Test results		Statistical analysis					
s' (kPa)	t (kPa)	t*(s') from linear regression (kPa)	s, (kPa)	t ^{0.95} (kPa)	$t_k = t^* - t_{(n-2)}^{0.95} s$ (kPa)		
70.0	40.0	40.8	4.5	8.2	32.6		
90.0	52.0	51.0	4.2	7.7	43.3		
100.0	55.0	56.1	4.1	7.5	48.6		
120.0	64.0	66.3	3.9	7.0	59.3		
200.0	105.0	107.0	3.1	5.6	101.4		
225.0	130.0	119.8	3.0	5.4	114.4		
240.0	121.0	127.4	2.9	5.3	122.1		
250.0	134.0	132.5	2.9	5.3	127.2		
400.0	231.0	208.9	3.8	6.9	202.0		
420.0	201.0	219.1	4.0	7.3	211.8		
450.0	229.0	234.3	4.4	8.0	226.3		
600.0	312.0	310.7	6.7	12.1	298.6		

Coefficients of linear regression:

Intercept: c' = 5.2 kPa Slope: sin $\varphi' = 0.51$, $\varphi' = 30.5^{\circ}$

c'_{k} = 0.8kPa and φ_{k} ' = 30°

Relevant formulas:

To obtain 95% reliable mean values (denote x = t and z = s' respectively)

$$s_{1} = \sqrt{\frac{1}{n-2} \left(\frac{1}{n} + \frac{(z-\overline{z})^{2}}{\sum_{i=1}^{n} (z_{i}-\overline{z})^{2}} \right)^{2}} \sum_{i=1}^{n} [(x_{i}-\overline{x}) - b(z_{i}-\overline{z})]^{2}}$$
$$X_{k} = [\overline{x} + b(z-\overline{z})] - t_{n-2}^{0.95} s_{1}$$

 $x^* = \overline{x} + b(z - \overline{z})$: linear regression

where

$$\overline{x} = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$
$$\overline{z} = \frac{1}{n} (z_1 + z_2 + \dots + z_n)$$
$$b = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(z_i - \overline{z})}{\sum_{i=1}^{n} (z_i - \overline{z})^2}$$

To obtain 5% fractile value, substitute s1 with s2.

$$s_{2} = \sqrt{\frac{1}{n-2} \left(1 + \frac{1}{n} + \frac{(z-\overline{z})^{2}}{\sum_{i=1}^{n} (z_{i}-\overline{z})^{2}} \right)^{n}} \sum_{i=1}^{n} [(x_{i}-\overline{x}) - b(z_{i}-\overline{z})]^{2}$$

t factor of from student's distribution could be obtained below, where r = n-2. (n=no of samples)

	p = 95%			
r				
2	2.920			
3	2.353			
4	2.132			
5	2.015			
6	1.943			
7	1.895			
8	1.860			
9	1.833			
10	1.812			
12	1.782			
15	1.753			
20	1.725			
25	1.708			
30	1.686			
00	1.645			